Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
386
2
avatar

Let x, y and z be positive real numbers such that x + y + z = 1.    Find the minimum value of (x + y + z)/(xyz).

 Jan 25, 2022
 #1
avatar+1634 
+4

x + y + z = 1. Since xyz is in the denominator, we want xyz to be the largest value possible.

 

The largest value possible of xyz is only if x = y = z, so x = y = z = 1/3.

 

1(13)2 = (x+y+z)xyz

 

Thus, the minimum value of (x+y+z)xyz is 27.

 

 

smiley

 Jan 25, 2022
 #2
avatar+364 
0

I think you made a mistake on format you wrote 1(13)2 instead of 1(13)3

 Jan 26, 2022

1 Online Users