Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
428
1
avatar

Given positive integers x and y such that $x\neq y$ and 1/x + 1/y = 1/20, what is the smallest possible value for x + y?

 Jul 29, 2021
 #1
avatar+26396 
+1

Given positive integers x and y such that xy and 1x+1y=120,
what is the smallest possible value for x+y?

 

1x+1y=120x+yxy=120xy=20(x+y)

 

AMGM

x+y2xyx+y2xy|square both sides(x+y)24xy|xy=20(x+y)(x+y)2420(x+y)x+y420x+y80

 

The smallest possible value for x+y is 80
Source: https://www.quora.com/Given-positive-integers-x-and-y-x-does-not-equal-y-and-frac-1-x-frac-1-y-frac-1-12-what-is-the-smallest-possible-value-for-x-y

 

In general:

1x+1y=1nx+y4nThe smallest possible value for x+y is 4n

 

laugh

 Jul 30, 2021

1 Online Users