Processing math: 100%
 
+0  
 
0
577
4
avatar

Given that $33^{-1} \equiv 77$ (mod $508$), find $11^{-1}$ (mod $508$) as a residue modulo 508. (Give an answer between 0 and 507, inclusive.)

 Jun 16, 2021
 #1
avatar
0

Using the Euclidean Algorith, $11^{-1} \equiv 269 \pmod{508}$.

 Jun 16, 2021
 #2
avatar
0

Can you further explain your thinking?

Guest Jun 16, 2021
 #3
avatar+287 
+1

By definition $33^{-1} \equiv 77 \pmod{508}$ means $33\cdot 77 \equiv 1 \pmod{508}$.  Thus $11\cdot 3\cdot 77 \equiv 1 \pmod{508}$.  Hence, $11^{-1} \equiv  3\cdot 77 \equiv 231 \pmod{508}$.

 Jun 16, 2021
 #4
avatar+26396 
+1

Given that 33177(mod508),
find 111(mod508) as a residue modulo 508.
(Give an answer between 0 and 507, inclusive.)

 

331=13377(mod508)133=131177(mod508)131177(mod508)|33311377(mod508)111231(mod508)111=111231(mod508)

 

laugh

 Jun 16, 2021

2 Online Users