By the angle sum/difference formula for cos,
cos(a - b) = cos a cos b + sin a sin b
And so...
cos(π6−x) = cos(π6)cos(x)+sin(π6)sin(x) cos(π6−x) = sin(π6)sin(x)+cos(π6)cos(x)
Now we can see that
A = sin(π6) = 12 B = cos(π6) = √32
And so...
BA = (√32)(12) = √3 _