Processing math: 100%
 
+0  
 
0
551
1
avatar

cos(pi/6-x) can be expressed in the form A(sin(x))+B(cos(x)) where A and B are constants. Find B/A.

 Dec 18, 2020
 #1
avatar+9488 
+1

By the angle sum/difference formula for cos,

 

cos(a - b)  =  cos a cos b + sin a sin b

 

And so...

 

cos(π6x) = cos(π6)cos(x)+sin(π6)sin(x) cos(π6x) = sin(π6)sin(x)+cos(π6)cos(x)

 

Now we can see that

 

A = sin(π6) = 12 B = cos(π6) = 32

 

And so...

 

BA = (32)(12) = 3    _

 Dec 18, 2020

1 Online Users

avatar