Processing math: 100%
 
+0  
 
+2
1076
3
avatar+368 

A four-digit hexadecimal integer is written on a napkin such that the units digit is illegible. The first three digits are 4, A, and 7. If the integer is a multiple of 17 base ten, what is the units digit?

 May 1, 2019
 #1
avatar+2864 
+3

I do not know how to solve this problem, so I will partially solve it and let someone else who knows how to solve it finish my solution.

 

 

Converting hexadecimal to base-ten

 

4 * 16^0

 

a * 16^1

 

7 * 16^2

 

x (ones digit)

 

x * 16^3

 

So now we have 4 + 16a + 1792 + 4096x

 

So we have 4096x+16a+1796, and we have to find the value of x and a in which it is divisible by 17.

 

Notice how x and a can only be 1 through 9.

 

So trial and error?

 May 1, 2019
edited by CalculatorUser  May 1, 2019
edited by CalculatorUser  May 1, 2019
 #2
avatar
+2

Well, you have already done most of the work!
Just go up the numbers from 0 to 9 and see which one is a multiple of 17.
Base 16                     Base 10
4A70                          19,056
4A71                           19,057, Bingo!, since it is multiple of 17. So, the Hex number ends in "1", or 4A71.

 May 1, 2019
 #3
avatar+26397 
+3

A four-digit hexadecimal integer is written on a napkin such that the units digit is illegible.

The first three digits are 4, A, and 7.

If the integer is a multiple of 17 base ten, 

what is the units digit?

 

4A7x16=((416+A)16+7)16+x|A=10=((416+10)16+7)16+x=(7416+7)16+x=119116+x=19056+x,x=0,1,,15

 

19056+x=n17, nZ19056+x0(mod17)|19056(mod17)=1616+x0(mod17)16+x=n17x=n1716|n=1x=11716x=1

 

laugh

 May 2, 2019
edited by heureka  May 2, 2019

0 Online Users