What is the smallest positive n under 50,000 that satisfies the following:
n mod 43 = 22
n mod 101 = 64
n mod 211 = 30 . Thanks for help.
What is the smallest positive n under 50,000 that satisfies the following:
n mod 43 = 22
n mod 101 = 64
n mod 211 = 30 . Thanks for help.
Omi67: Thanks for that, but the question is about ONE NUMBER, n, that satifies those 3 conditions.
43A + 22 =101B + 64 =211C + 30, solve for A,B,C.
A=1,065, B=453, C=217, so that:
43 x 1,065 + 22 =45,817 The smallest positive number.
LCM {43, 101, 211} =916,373. So, the general form is:
916,373D + 45,817. And for D=0, 1, 2......etc. We have:
45,817 The smallest positive number.
962,190
1,878,563.......etc.
What is the smallest positive n under 50,000 that satisfies the following:
n mod 43 = 22
n mod 101 = 64
n mod 211 = 30 . Thanks for help.
n≡22(mod43)n≡64(mod101)n≡30(mod211)Let m=43⋅101⋅211=916373
43 is a prime number, and 101 is a prime number, and 211 is a prime number.
Because 43 and 101 and 211 are relatively prim ( gcd(43,101,211) = 1! ) we can go on:
n=22⋅101⋅211⋅[(101⋅211)φ(43)−1mod43]⏟=modulo inverse (101⋅211)(mod43)⏟=(101⋅211)42−1(mod43)⏟=(101⋅211)41(mod43)⏟=(21311(mod43))41(mod43)⏟=(26)41(mod43)⏟=5+64⋅43⋅211⋅[(43⋅211)φ(101)−1mod101]⏟=modulo inverse (43⋅211)(mod101)⏟=(43⋅211)100−1(mod101)⏟=(43⋅211)99(mod101)⏟=(9073(mod101))99(mod101)⏟=(84)99(mod101)⏟=95+30⋅43⋅101⋅[(43⋅101)φ(211)−1mod211]⏟=modulo inverse (43⋅101)(mod211)⏟=(43⋅101)210−1mod211⏟=(43⋅101)209mod211⏟=(4343(mod211))209mod211⏟=(123)209mod211⏟=199+43⋅101⋅211⋅k|k∈Zn=22⋅101⋅211⋅[5]+64⋅43⋅211⋅[95]+30⋅43⋅101⋅[199]+43⋅101⋅211⋅kn=2344210+55163840+25927710+43⋅101⋅211⋅kn=83435760+916373⋅k|k∈Znmin=83435760(mod916373)nmin=45817n=45817+916373⋅k|k∈Z
The smallest positive n under 50,000 is 45817