Processing math: 100%
 
+0  
 
0
2007
3
avatar

When working modulo m, the notation a^-1 is used to denote the residue b for which ab1(modm), if any exists. For how many integers a satisfying 0 < a < 100 is it true that a(a1)14a1(mod20)?

Please hurry up guys!!

 Aug 28, 2018
edited by Guest  Aug 28, 2018

Best Answer 

 #1
avatar+26396 
+5

When working modulo m, the notation a1 is used to denote the residue b for which ab1(modm),
if any exists.
For how many integers a satisfying 0<a<100 is it true that a(a1)14a1(mod20) ?

 

a(a1)14a1(mod20)|aa2(a1)14a1a(mod20)|a1a=aa=1a2(a1)14(mod20)|a2(a1)1=a2a1=a+1+1a1a+1+1a1is integer, only if a=24(mod20)|a=22+1+1214(mod20)|3+14(mod20)44(mod20) 

 

One Integer solution a=2

 

laugh

 Aug 29, 2018
 #1
avatar+26396 
+5
Best Answer

When working modulo m, the notation a1 is used to denote the residue b for which ab1(modm),
if any exists.
For how many integers a satisfying 0<a<100 is it true that a(a1)14a1(mod20) ?

 

a(a1)14a1(mod20)|aa2(a1)14a1a(mod20)|a1a=aa=1a2(a1)14(mod20)|a2(a1)1=a2a1=a+1+1a1a+1+1a1is integer, only if a=24(mod20)|a=22+1+1214(mod20)|3+14(mod20)44(mod20) 

 

One Integer solution a=2

 

laugh

heureka Aug 29, 2018
 #2
avatar
+1

Er... I don't think that it is...

For one, it says integers

Second, my friend has seen this before and he says it's not 1

 Aug 29, 2018
 #3
avatar+2234 
+4

Solving it this way gives:

 

a(a1)14a1(mod20)a4a1(a1)(mod20)a24(a1)(mod20)a24a+40(mod20)(a2)20(mod20) a=2+10n| for n = (0, 1, 2, … 9), so 10 integers  satisfy 0 < a < 100

 

Well blimey! You’re right. (I’m surprised because Heureka can do mod problems while napping.)

 

GA

 Aug 30, 2018

2 Online Users

avatar