Processing math: 100%
 
+0  
 
0
510
8
avatar+7 

If a,b,c are positive integers less than 13 such that

 2ab+bc+ca0(mod13)ab+2bc+ca2abc(mod13)ab+bc+2ca8abc(mod13)

then determine the remainder when a+b+c is divided by 13.

 

I've tried to solve this but I just don't know how

 

If  are positive integers less than  such thatthen determine the remainder when  is divided by .

 Nov 13, 2021

Best Answer 

 #5
avatar
+8

We know that the integers modulo  13  form a field, so we can operate on systems almost like usual. Equalities will just mean congruence modulo  13 .
From the first equation we obtain  ca=−2ab−bc  and therefore the second equation gives
ab+2bc−2ab−bc=2b(−2ab−bc) 
that is
b(a−c)=2b2(2a+c) 
The third equation gives  
 ab+bc−4ab−2bc=8b(−2ab−bc) 
that is:
b(3a+c)=8b^2(2a+c) 

We know that  b≠0  (because  b  is a positive integer less than  13 ), so we can simplify it off. If  2a+c=0 , then also  a−c=0 , but this implies  a=c=0 , which is excluded. Thus we obtain
2b=(a−c) / (2a+c) 
8b=(3a+c) / (2a+c) 
Thus we need
4(a−c) / (2a+c)=(c+3a) / (2a+c) 
and therefore  (4a−4c)=(c+3a) , that is,  a=5c .
 Now we can substitute in  2ab+bc+ca=0  to get
10bc+bc+5c^2=0 
Since  c≠0  we obtain  11b+5c=0 , so  2b=5c  Multiplying by  7  yields  14b=35c  and so  b=9c
 Now we can substitute in
ab+2bc+ca=2abc 
to get:
45c^2+18c^2+5c^2=90c^3 
Thus:
  3c^2=12c^3 
and so  −c=3 , that is,  c=10 . Hence  a=5c=11  and  b=9c=12 
Solution:
a=11,b=12,c=10 
and so  a+b+c≡7(mod13)       
 

 Nov 17, 2021
 #2
avatar+118723 
+1

I'd like to see an answer for this too.    indecision

 Nov 13, 2021
 #3
avatar+2236 
+3

Solution:

 

Modular arithmetic theorem: If (a, b, c) are positive integers and(modm) is relatively prime, then there exists (a1,b1,c1) such that (aa1bb1cc1(modm)), with a, b, c, relatively prime within the ring of modulo (m); i.e. 1[a,b,c]<13.

 

a1b1c1(2ab+bc+ca)1(mod13)a1b1c1(ab+2bc+ca)3(mod13)a1b1c1(ab+bc+2ca)5(mod13)2c1+a1+b11(mod13)c1+2a1+b13(mod13)c1+a1+2b15(mod13)

 

add equations: 4c1+4a1+4b19(mod13)4(c1+a1+b1)9(mod13)

 

Note that4(mod13)9, so (a1+b1+c1)1and 112(mod13), so search for three numbers where 1a,b,c<12.using the above inverse equations to find which value belongs to each variable. Then take the Modular Multiplicative Inverse of these numbers, sum them to (S) and find S(mod13).if you do this correctly, you will find the answer (remainder) is 2

 

GA

--. .-

 Nov 15, 2021
edited by Guest  Nov 15, 2021
 #4
avatar+118723 
0

Thanks Ginger.

I get the drift.  I will try it later. 

Melody  Nov 15, 2021
 #5
avatar
+8
Best Answer

We know that the integers modulo  13  form a field, so we can operate on systems almost like usual. Equalities will just mean congruence modulo  13 .
From the first equation we obtain  ca=−2ab−bc  and therefore the second equation gives
ab+2bc−2ab−bc=2b(−2ab−bc) 
that is
b(a−c)=2b2(2a+c) 
The third equation gives  
 ab+bc−4ab−2bc=8b(−2ab−bc) 
that is:
b(3a+c)=8b^2(2a+c) 

We know that  b≠0  (because  b  is a positive integer less than  13 ), so we can simplify it off. If  2a+c=0 , then also  a−c=0 , but this implies  a=c=0 , which is excluded. Thus we obtain
2b=(a−c) / (2a+c) 
8b=(3a+c) / (2a+c) 
Thus we need
4(a−c) / (2a+c)=(c+3a) / (2a+c) 
and therefore  (4a−4c)=(c+3a) , that is,  a=5c .
 Now we can substitute in  2ab+bc+ca=0  to get
10bc+bc+5c^2=0 
Since  c≠0  we obtain  11b+5c=0 , so  2b=5c  Multiplying by  7  yields  14b=35c  and so  b=9c
 Now we can substitute in
ab+2bc+ca=2abc 
to get:
45c^2+18c^2+5c^2=90c^3 
Thus:
  3c^2=12c^3 
and so  −c=3 , that is,  c=10 . Hence  a=5c=11  and  b=9c=12 
Solution:
a=11,b=12,c=10 
and so  a+b+c≡7(mod13)       
 

Guest Nov 17, 2021
 #6
avatar+2236 
+4

Guest’s solution is correct. Mine is NOT.

 

My partial solution (copied from my archive of solved equations) is based on similar equations with a different set of congruencies (mod 13).


2ab+bc+caabc(mod13)ab+2bc+ca3abc(mod13)ab+bc+2ca5abc(mod13)

 

I failed to modify the congruencies to match the question.  Someone should troll me for it.

However, this solution method will work for the equations in the OP’s question.

 

 

GA

--. .-

 Nov 17, 2021
 #7
avatar+118723 
+1

Thanks Guest and Ginger   laugh

 Nov 17, 2021
 #8
avatar+7 
+1

Thanks, these were really helpful

 Nov 21, 2021

1 Online Users

avatar