Processing math: 100%
 
+0  
 
+1
1860
1
avatar

If the quadratic $3x^2+bx+10$ can be written in the form $a(x+m)^2+n$, where $m$ and $n$ are integers, what is the largest integer that must be a divisor of $b$?

 May 14, 2019
 #1
avatar+9488 
+6

 =3x2+bx+10 =3(x2+b3x)+10 =3(x2+b3x+(b6)2(b6)2)+10 =3((x+b6)2(b6)2)+10 =3(x+b6)23(b6)2+10

 

Now it is in the form  a(x + m)2 + n   where

 

a=3andm=b6andn=3(b6)2+10

 

In order for  m  to be an integer,  b  must be a multiple of  6

In order for  n  to be an integer,  b  must be a multiple of  6

The largest integer that must be a divisor of  b  in order for both  m  and  n  to be integers is  6

 May 14, 2019

2 Online Users

avatar