Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
866
5
avatar

 

I feel like I am understanding the concept of limits. I have not had many problems with solving limits, but there are a few problems that are giving me more grief than I anticipated. I really do not want someone to spoonfeed me the answer here; please only steer me in the right direction. Thanks!

 

1. limx0(11+x1x)

 

I have tried a few things to no avail. I tried combining this complex fraction into a simpler one. Here's what I have tried:

 

limx0(11+x1x)=limx0(11+x1+x1+xx)

limx0(11+x1x)=limx0(x+1)1/2(x+1)x(x+1)

I now tried factoring out the largest common divider from the numerator and see what happens:

limx0(11+x1x)=limx0(x+1)1/2[1(x+1)1/2]x(x+1)

limx0(11+x1x)=limx01(x+1)1/2x(x+1)1/2

 

This does not appear to have served me any good. I have not made any progress. I cannot substitute 0 in for the argument of the limit as it still outputs indeterminate. There must be some other method I am neglecting, no?

 

2. limΔx0sin(π6+Δx)12Δx

 

I am not really sure what to do here. 

 Sep 2, 2019
 #1
avatar+9490 
+4

1.

 

=limx0(11+x1x) =limx0(11+x1+x1+xx) =limx0(11+x1+xx) =limx0(11+x1+x÷x)  =limx0(11+x1+x1x)  =limx0(11+xx1+x)

 

When you get to this point, instead of multiplying the numerator and denominator by   1+x ,

 

try multiplying the numerator and denominator by   1+1+x   (the conjugate of the numerator)

 

After you do that, you should be able to simplify it to a point where you can substitute  0  in for  x  and get a defined value.

 

----------

 

Hope this helps for your first question!

As for your second question, have you learned about or are you allowed to use L'Hopital's rule?

 Sep 2, 2019
 #3
avatar
+1

1. I am sort of surprised that the concept of the conjugate did not spring into my mind. Thanks for that small tip. 

 

2. No, I have not learned L'Hopital's rule. There is a hint near the footnote of the page for this problem; it says to think about trigonometric identities. It seems to me that the sum-difference identity is the proper one to use. Specifically, sin(A+B)=sinAcosB+cosAsinB.

 

limΔx0sin(π6+Δx)12Δx=limΔx0sin(π6)cosΔx+cos(π6)sinΔx12ΔxlimΔx0sin(π6+Δx)12Δx=limΔx012cosΔx+32sinΔx12ΔxlimΔx0sin(π6+Δx)12Δx=limΔx0cosΔx+3sinΔx12Δx

 

I still do not see a way to simplify this limit. Although, I may be closer than I was before. The indeterminate form still exists. 

Guest Sep 3, 2019
 #2
avatar+26399 
+2

1.

limx0(11+x1x)

 

limx0(11+x1x)=limx0((1+x)121x)|L'Hospital's rule=limx0(d ((1+x)121)dxd (x)dx)=limx0(12(1+x)1211)|x0=12

 

 

laugh

 Sep 3, 2019
 #4
avatar+130508 
+2

You are going in the right direction.....we can split your answer  up into these  functions

 

         cosΔx - 1                             sinΔx 

(1/2)  _______    +    (√ 3/2)    _________ 

            Δx                                       Δx

 

 

 

We have two identities to remember  :

 

As   x →  0,     cos Δx  -  1

                       __________     approaches 0......

                                Δx 

 

So   the limit of the first function  just simplifies to  0

 

Also    as x   → 0 ,     sin Δx

                                  ______   approaches  1......

                                     Δx

 

So the limit of the second function just simplifies  to (√ 3/2) 

 

 

So  

 

lim               sin ( pi/6  +  Δx)  - 1/2           

 x→ 0         __________________   =   (√ 3/2) 

                            Δx

 

 

See the graph here : https://www.desmos.com/calculator/mnpxjiqitj

 

 

cool cool cool

 Sep 3, 2019
edited by CPhill  Sep 3, 2019
 #5
avatar
0

Thank you, Cphill!

 

When limits are involved, shuffling terms can be quite powerful. This strategy has let me finish the rest of the packet as it is a common theme throughout the limit packet I am completing. 

Guest Sep 5, 2019

1 Online Users