lim((sqrt(x+3)-2)/sqrt(x-1)),x->1
limx→1(√x+3−2√x−1)= ?
√x+3−2√x−1=√x+3−2√x−1⋅(√x+3+2√x+3+2)⋅(√x−1√x−1)=(x+3−4)(√x−1)(x−1)⋅(√x+3+2)(√x+3−2)(√x+3+2)=(√x+3)2−22=(x−1)(√x−1)(x−1)⋅(√x+3+2)=(√x−1)(√x+3+2)limx→1(√x+3−2√x−1)=limx→1(√x−1√x+3+2)=√1−1√1+3+2=√0√4+2=02+2=04limx→1(√x+3−2√x−1)=0
Look at the graph.......https://www.desmos.com/calculator/ibakfqzqrk
The limit doesn't exist.....unless we restrict it to a one-sided limit approaching 1 from the right......then......the limit = 0
lim((sqrt(x+3)-2)/sqrt(x-1)),x->1
limx→1(√x+3−2√x−1)= ?
√x+3−2√x−1=√x+3−2√x−1⋅(√x+3+2√x+3+2)⋅(√x−1√x−1)=(x+3−4)(√x−1)(x−1)⋅(√x+3+2)(√x+3−2)(√x+3+2)=(√x+3)2−22=(x−1)(√x−1)(x−1)⋅(√x+3+2)=(√x−1)(√x+3+2)limx→1(√x+3−2√x−1)=limx→1(√x−1√x+3+2)=√1−1√1+3+2=√0√4+2=02+2=04limx→1(√x+3−2√x−1)=0