lim(sqrt(4x^4+x^2+1)-(2x^4+3x^2+x)/(x^2+1)),x->infinity
limx→∞(√4x4+x2+1−2x4+3x2+xx2+1)= ?√4x4+x2+1=ss2=4x4+x2+1
√4x4+x2+1−2x4+3x2+xx2+1=s−2x4+3x2+xx2+1=(x2+1)⋅s−(2x4+3x2+x)x2+1=((x2+1)⋅s−(2x4+3x2+x)x2+1)((x2+1)⋅s+(2x4+3x2+x)(x2+1)⋅s+(2x4+3x2+x))=(x2+1)2⋅s2−(2x4+3x2+x)2(x2+1)2⋅s+(x2+1)⋅(2x4+3x2+x)=(x2+1)2⋅(4x4+x2+1)−(2x4+3x2+x)2(x2+1)2⋅s+(x2+1)⋅(2x4+3x2+x)=…=4x8+9x6+7x4+3x2+1−4x8−12x6−4x5−9x4−6x3−x2(x4+2x2+1)⋅s+2x6+5x4+x3+3x2+x=−3x6−4x5−2x4−6x3+2x2+1(x4+2x2+1)⋅√4x4+x2+1+2x6+5x4+x3+3x2+x=−3x6−4x5−2x4−6x3+2x2+1(x4+2x2+1)⋅x2√4+1x2+1x4+2x6+5x4+x3+3x2+x | :x6:x6=−3−41x−21x2−61x3+21x4+1x6(x4+2x2+1)x4⋅√4+1x2+1x4+2+51x2+1x3+31x4+1x5=−3−41x−21x2−61x3+21x4+1x6(1+21x2+1x4)⋅√4+1x2+1x4+2+51x2+1x3+31x4+1x5limx→∞(√4x4+x2+1−2x4+3x2+xx2+1)=−3(1)⋅√4+2limx→∞(√4x4+x2+1−2x4+3x2+xx2+1)=−32+2limx→∞(√4x4+x2+1−2x4+3x2+xx2+1)=−34
lim(sqrt(4x^4+x^2+1)-(2x^4+3x^2+x)/(x^2+1)),x->infinity
lim_(x->infinity) (sqrt(4 x^4+x^2+1)-(2 x^4+3 x^2+x)/(x^2+1)) = -3/4
lim(sqrt(4x^4+x^2+1)-(2x^4+3x^2+x)/(x^2+1)),x->infinity
limx→∞(√4x4+x2+1−2x4+3x2+xx2+1)= ?√4x4+x2+1=ss2=4x4+x2+1
√4x4+x2+1−2x4+3x2+xx2+1=s−2x4+3x2+xx2+1=(x2+1)⋅s−(2x4+3x2+x)x2+1=((x2+1)⋅s−(2x4+3x2+x)x2+1)((x2+1)⋅s+(2x4+3x2+x)(x2+1)⋅s+(2x4+3x2+x))=(x2+1)2⋅s2−(2x4+3x2+x)2(x2+1)2⋅s+(x2+1)⋅(2x4+3x2+x)=(x2+1)2⋅(4x4+x2+1)−(2x4+3x2+x)2(x2+1)2⋅s+(x2+1)⋅(2x4+3x2+x)=…=4x8+9x6+7x4+3x2+1−4x8−12x6−4x5−9x4−6x3−x2(x4+2x2+1)⋅s+2x6+5x4+x3+3x2+x=−3x6−4x5−2x4−6x3+2x2+1(x4+2x2+1)⋅√4x4+x2+1+2x6+5x4+x3+3x2+x=−3x6−4x5−2x4−6x3+2x2+1(x4+2x2+1)⋅x2√4+1x2+1x4+2x6+5x4+x3+3x2+x | :x6:x6=−3−41x−21x2−61x3+21x4+1x6(x4+2x2+1)x4⋅√4+1x2+1x4+2+51x2+1x3+31x4+1x5=−3−41x−21x2−61x3+21x4+1x6(1+21x2+1x4)⋅√4+1x2+1x4+2+51x2+1x3+31x4+1x5limx→∞(√4x4+x2+1−2x4+3x2+xx2+1)=−3(1)⋅√4+2limx→∞(√4x4+x2+1−2x4+3x2+xx2+1)=−32+2limx→∞(√4x4+x2+1−2x4+3x2+xx2+1)=−34