Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2073
1
avatar

Let $m$ and $n$ be the roots of the quadratic equation $4x^2 + 5x + 3 = 0$. Find $(m + 7)(n + 7)$.

 Feb 22, 2017

Best Answer 

 #1
avatar+26397 
+15

Let m and n be the roots of the quadratic equation 4x^2 + 5x + 3 = 0.

Find (m + 7)(n + 7).

 

ax2+bx+c=0x=b±b24ac2ax1+x2=b+b24ac2a+bb24ac2a=b2a+b24ac2a+b2ab24ac2a=2b2ax1+x2=ba or m+n=bax1x2=(b+b24ac2a)(bb24ac2a)=(b2a+b24ac2a)(b2ab24ac2a)=(b2a)2(b24ac2a)2=b24a2b24ac4a2=b2(b24ac)4a2=b2b2+4ac4a2=4ac4a2x1x2=ca or mn=ca

 

(m+7)(n+7)=mn+7(m+n)+72=mn+7(m+n)+494x2+5x+3=0a=4, b=5, c=3m+n=ba=54mn=ca=34(m+7)(n+7)=mn+7(m+n)+49=34+7(54)+49=324+49=8+49=41

 

(m + 7)(n + 7) = 41

 

laugh

 Feb 23, 2017
edited by heureka  Feb 23, 2017
edited by heureka  Feb 23, 2017
 #1
avatar+26397 
+15
Best Answer

Let m and n be the roots of the quadratic equation 4x^2 + 5x + 3 = 0.

Find (m + 7)(n + 7).

 

ax2+bx+c=0x=b±b24ac2ax1+x2=b+b24ac2a+bb24ac2a=b2a+b24ac2a+b2ab24ac2a=2b2ax1+x2=ba or m+n=bax1x2=(b+b24ac2a)(bb24ac2a)=(b2a+b24ac2a)(b2ab24ac2a)=(b2a)2(b24ac2a)2=b24a2b24ac4a2=b2(b24ac)4a2=b2b2+4ac4a2=4ac4a2x1x2=ca or mn=ca

 

(m+7)(n+7)=mn+7(m+n)+72=mn+7(m+n)+494x2+5x+3=0a=4, b=5, c=3m+n=ba=54mn=ca=34(m+7)(n+7)=mn+7(m+n)+49=34+7(54)+49=324+49=8+49=41

 

(m + 7)(n + 7) = 41

 

laugh

heureka Feb 23, 2017
edited by heureka  Feb 23, 2017
edited by heureka  Feb 23, 2017

1 Online Users

avatar