Let $m$ and $n$ be the roots of the quadratic equation $4x^2 + 5x + 3 = 0$. Find $(m + 7)(n + 7)$.
Let m and n be the roots of the quadratic equation 4x^2 + 5x + 3 = 0.
Find (m + 7)(n + 7).
ax2+bx+c=0x=−b±√b2−4ac2ax1+x2=−b+√b2−4ac2a+−b−√b2−4ac2a=−b2a+√b2−4ac2a+−b2a−√b2−4ac2a=−2b2ax1+x2=−ba or m+n=−bax1⋅x2=(−b+√b2−4ac2a)⋅(−b−√b2−4ac2a)=(−b2a+√b2−4ac2a)⋅(−b2a−√b2−4ac2a)=(−b2a)2−(√b2−4ac2a)2=b24a2−b2−4ac4a2=b2−(b2−4ac)4a2=b2−b2+4ac4a2=4ac4a2x1⋅x2=ca or m⋅n=ca
(m+7)(n+7)=m⋅n+7⋅(m+n)+72=m⋅n+7⋅(m+n)+494x2+5x+3=0a=4, b=5, c=3m+n=−ba=−54m⋅n=ca=34(m+7)(n+7)=m⋅n+7⋅(m+n)+49=34+7⋅(−54)+49=−324+49=−8+49=41
(m + 7)(n + 7) = 41
Let m and n be the roots of the quadratic equation 4x^2 + 5x + 3 = 0.
Find (m + 7)(n + 7).
ax2+bx+c=0x=−b±√b2−4ac2ax1+x2=−b+√b2−4ac2a+−b−√b2−4ac2a=−b2a+√b2−4ac2a+−b2a−√b2−4ac2a=−2b2ax1+x2=−ba or m+n=−bax1⋅x2=(−b+√b2−4ac2a)⋅(−b−√b2−4ac2a)=(−b2a+√b2−4ac2a)⋅(−b2a−√b2−4ac2a)=(−b2a)2−(√b2−4ac2a)2=b24a2−b2−4ac4a2=b2−(b2−4ac)4a2=b2−b2+4ac4a2=4ac4a2x1⋅x2=ca or m⋅n=ca
(m+7)(n+7)=m⋅n+7⋅(m+n)+72=m⋅n+7⋅(m+n)+494x2+5x+3=0a=4, b=5, c=3m+n=−ba=−54m⋅n=ca=34(m+7)(n+7)=m⋅n+7⋅(m+n)+49=34+7⋅(−54)+49=−324+49=−8+49=41
(m + 7)(n + 7) = 41