knowing that Tan(45)=1, find Sin(45) and Cos(45) with the fonamental relations
Tan (45) = y / x = 1 / 1
And
Sin (45) = y / r and Cos (45) = x / r = 1 / r
And r = sqrt (1 + 1) = sqrt (2)
So
Sin (45) = Cos (45) = 1 / r = 1 / sqrt (2) = sqrt (2) / 2
knowing that Tan(45)=1, find Sin(45) and Cos(45) with the fonamental relations
tan(45∘)=1cot(45∘)=1tan(45∘)=11=1
Formula:
sin2(x)+cos2(x)=1
sin2(45∘)+cos2(45∘)=1|:cos2(45∘)sin2(45∘)+cos2(45∘)cos2(45∘)=1cos2(45∘)sin2(45∘)cos2(45∘)+cos2(45∘)cos2(45∘)=1cos2(45∘)tan2(45∘)+1=1cos2(45∘)|tan(45∘)=11+1=1cos2(45∘)2=1cos2(45∘)|square root both sides√2=1cos(45∘)1√2=cos(45∘)
sin2(45∘)+cos2(45∘)=1|:sin2(45∘)sin2(45∘)+cos2(45∘)sin2(x)=1sin2(45∘)sin2(45∘)sin2(45∘)+cos2(45∘)sin2(45∘)=1sin2(45∘)1+cot2(45∘)=1sin2(45∘)|cot(45∘)=11+1=1sin2(45∘)2=1sin2(45∘)|square root both sides√2=1sin(45∘)1√2=sin(45∘)