Processing math: 100%
 
+0  
 
0
739
3
avatar

Let z be a nonreal complex number such that |z|=1. Find the real part of 11z.

 Nov 27, 2020

Best Answer 

 #1
avatar+9488 
+1

The question implies that the real part of  11z  is the same for all nonreal complex values of  z  such that  |z|=1 . So assuming that's true, we can pick any nonreal complex  z  such that  |z|=1  and find the real part of  11z .

 

Let's pick  z  =  0 + 1i

 

Then...

 

11z = 11(0+1i) 11z = 111i 11z = 111i1+1i1+1i 11z = 1+1i1i2 11z = 1+1i1(1) 11z = 1+1i2 11z = 12+12i

 

 

The real part is  12

 

 

We can check a few more cases to see that it is 1/2 for those as well:

 

z = cis( pi/6 )

z = cis( pi/4 )

 

 

It seems like no matter what the angle is, the real part is  1/2  smiley

 Nov 27, 2020
 #1
avatar+9488 
+1
Best Answer

The question implies that the real part of  11z  is the same for all nonreal complex values of  z  such that  |z|=1 . So assuming that's true, we can pick any nonreal complex  z  such that  |z|=1  and find the real part of  11z .

 

Let's pick  z  =  0 + 1i

 

Then...

 

11z = 11(0+1i) 11z = 111i 11z = 111i1+1i1+1i 11z = 1+1i1i2 11z = 1+1i1(1) 11z = 1+1i2 11z = 12+12i

 

 

The real part is  12

 

 

We can check a few more cases to see that it is 1/2 for those as well:

 

z = cis( pi/6 )

z = cis( pi/4 )

 

 

It seems like no matter what the angle is, the real part is  1/2  smiley

hectictar Nov 27, 2020
 #2
avatar+130466 
+1

Looks good, hectictar  !!!!

 

 

cool cool cool

CPhill  Nov 27, 2020
 #3
avatar
+2

Thank you so much for your help!

Guest Nov 28, 2020

0 Online Users