How he made this !
\int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx =\int \frac{1}{\sqrt{4[ 1- \left( \frac{x-3}{2} \right)^2} ] }\ dx =\frac{1}{2}\int \frac{1}{\sqrt{1- \left( \frac{x-3}{2} \right)^2}}\ dx\\\\ \small{\text{We substitute: $ \frac{x-3}{2}=\sin{(u)}, $ so we have $ \frac{1}{2}\ dx=\cos{(u)}\ du $ or $ \ dx=2\cos{(u)}\ du $ }}\\ =\frac{1}{2}\int \frac{2\cos{(u)}}{\sqrt{1- \sin^2{(u)}}}\ du =\frac{1}{2}\int \frac{2\cos{(u)}}{\cos{(u)}}}\ du =\int\ du=u\\ \small{\text{We substitute back: $ u=\arcsin{ ( \frac{x-3}{2} ) } $ }}\\\\ \int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx =\sin^{-1}{ ( \frac{x-3}{2} ) }
-5 + 6x - x^2 =
-5 - (x^2 - 6x ) complete the square on x...take one-half the coefficient on x
(= 3), square it (= 9)....then......add and subtract it...so we have...
-5 - (x^2 - 6x + 9 - 9) =
-5 + 9 - (x^2 - 6x + 9) factor the expression on the parenthesis
4 - (x - 3)^2
And that's it...
How he made this !
\int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx =\int \frac{1}{\sqrt{4[ 1- \left( \frac{x-3}{2} \right)^2} ] }\ dx =\frac{1}{2}\int \frac{1}{\sqrt{1- \left( \frac{x-3}{2} \right)^2}}\ dx\\\\ \small{\text{We substitute: $ \frac{x-3}{2}=\sin{(u)}, $ so we have $ \frac{1}{2}\ dx=\cos{(u)}\ du $ or $ \ dx=2\cos{(u)}\ du $ }}\\ =\frac{1}{2}\int \frac{2\cos{(u)}}{\sqrt{1- \sin^2{(u)}}}\ du =\frac{1}{2}\int \frac{2\cos{(u)}}{\cos{(u)}}}\ du =\int\ du=u\\ \small{\text{We substitute back: $ u=\arcsin{ ( \frac{x-3}{2} ) } $ }}\\\\ \int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx =\sin^{-1}{ ( \frac{x-3}{2} ) }
Let's go from this step
-(x^2 -6x + 9 - 9) - 5 =
-(x^2 - 6x + 9) + 9 - 5 =
-(x - 3)^2 + 4 =
4 - (x - 3)^2
But why we cant multiply the negative sign inside the parentheses in this step
-(x^2 - 6x + 9) + 9 - 5
so its become
(-x^2 + 6x - 9) + 9 - 5
You mistake is that
(x−3)2=x2−6x+9$Itdoesnotequal$−x2+6x−9 $thatiswhy−1hadtobeleftoutofthebracket!$
Melody
I don't get it
−x2+6x−9 = (x−3)2
Also
x2−6x+9=(x−3)2
so what is wrong !!!