Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1
1610
11
avatar+1832 

How he made this ! 

 

 Feb 3, 2015

Best Answer 

 #2
avatar+26396 
+15

How he made this !

\int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx =\int \frac{1}{\sqrt{4[ 1- \left( \frac{x-3}{2} \right)^2} ] }\ dx =\frac{1}{2}\int \frac{1}{\sqrt{1- \left( \frac{x-3}{2} \right)^2}}\ dx\\\\ \small{\text{We substitute: $ \frac{x-3}{2}=\sin{(u)}, $ so we have $ \frac{1}{2}\ dx=\cos{(u)}\ du $ or $ \ dx=2\cos{(u)}\ du $ }}\\ =\frac{1}{2}\int \frac{2\cos{(u)}}{\sqrt{1- \sin^2{(u)}}}\ du =\frac{1}{2}\int \frac{2\cos{(u)}}{\cos{(u)}}}\ du =\int\ du=u\\ \small{\text{We substitute back: $ u=\arcsin{ ( \frac{x-3}{2} ) }  $ }}\\\\ \int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx =\sin^{-1}{ ( \frac{x-3}{2} ) }

 Feb 3, 2015
 #1
avatar+130466 
+15

 

 

-5 + 6x - x^2 =

-5 - (x^2 - 6x )          complete the square on x...take one-half the coefficient on x

(= 3), square it (= 9)....then......add and subtract it...so we have...

-5 - (x^2 - 6x + 9 - 9) =

-5 + 9 - (x^2 - 6x + 9)       factor  the expression on the parenthesis

4 - (x - 3)^2

And that's it...

 

 Feb 3, 2015
 #2
avatar+26396 
+15
Best Answer

How he made this !

\int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx =\int \frac{1}{\sqrt{4[ 1- \left( \frac{x-3}{2} \right)^2} ] }\ dx =\frac{1}{2}\int \frac{1}{\sqrt{1- \left( \frac{x-3}{2} \right)^2}}\ dx\\\\ \small{\text{We substitute: $ \frac{x-3}{2}=\sin{(u)}, $ so we have $ \frac{1}{2}\ dx=\cos{(u)}\ du $ or $ \ dx=2\cos{(u)}\ du $ }}\\ =\frac{1}{2}\int \frac{2\cos{(u)}}{\sqrt{1- \sin^2{(u)}}}\ du =\frac{1}{2}\int \frac{2\cos{(u)}}{\cos{(u)}}}\ du =\int\ du=u\\ \small{\text{We substitute back: $ u=\arcsin{ ( \frac{x-3}{2} ) }  $ }}\\\\ \int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx =\sin^{-1}{ ( \frac{x-3}{2} ) }

heureka Feb 3, 2015
 #3
avatar+1832 
+5

But where is my mistake here 

 

 Feb 5, 2015
 #4
avatar+130466 
+10

Let's go from this step

-(x^2 -6x + 9 - 9) - 5    =

-(x^2 - 6x + 9) +  9 - 5  =

-(x - 3)^2 + 4  =

4 - (x - 3)^2

 

 Feb 5, 2015
 #5
avatar+1832 
+5

But why we cant multiply the negative sign inside the parentheses in this step 

-(x^2 - 6x + 9) +  9 - 5

 

so its become 

(-x^2 + 6x - 9) + 9 - 5

 Feb 6, 2015
 #6
avatar+118703 
+10

You mistake is that

(x3)2=x26x+9$Itdoesnotequal$x2+6x9 $thatiswhy1hadtobeleftoutofthebracket!$

 Feb 6, 2015
 #7
avatar+130466 
+5

Thanks, Melody.....

 

 Feb 6, 2015
 #8
avatar+118703 
+5

My pleasure Chris :)

 Feb 6, 2015
 #9
avatar+1832 
0

Melody 

I don't get it 

x2+6x9 = (x3)2

Also 

x26x+9=(x3)2

 

so what is wrong !!! 

 Feb 18, 2015
 #10
avatar+118703 
+5

NO

x2+6x9  does not equal      (x3)2      

 

 

x2+6x9=(x26x+9)=1(x26x+9)=1(x3)2$the1isnotsquaredso$(x3)2x2+6x9

 

remember 

    32(3)2

 

consider these two sums

20+32=2032=209=11

and

20+(3)2=20++9=29

 

see        32(3)2

 

I hope that helps :)

 Feb 18, 2015
 #11
avatar+1832 
+5

Now its clear .. thank you 

 Feb 18, 2015

1 Online Users

avatar