Prove that if a, b, and c are positive real numbers, then
sqrt(a^2 + ab + b^2) + sqrt(a^2 + ac + c^2) + sqrt(b^2 + bc + c^2) >= sqrt(3) (sqrt(ab) + sqrt(ac) + sqrt(bc))
When does equality occur?
This inequality can be proven using the Cauchy-Schwarz inequality.
Let x=sqrt(a2+ab+b2),y=sqrt(a2+ac+c2), and z=sqrt(b2+bc+c2), then we can rewrite the inequality as:
x+y+z>=sqrt(3)(sqrt(ab)+sqrt(ac)+sqrt(bc))
Squaring both sides, we get:
(x+y+z)2>=3(sqrt(ab)+sqrt(ac)+sqrt(bc))2
Expanding the left-hand side, we get:
x2+y2+z2+2xy+2xz+2yz>=3(sqrt(ab)+sqrt(ac)+sqrt(bc))2
Expanding the right-hand side, we get:
x2+y2+z2+2xy+2xz+2yz>=3(ab+ac+bc+2sqrt(ab)sqrt(ac)+2sqrt(ab)sqrt(bc)+2sqrt(ac)sqrt(bc))
Using the Cauchy-Schwarz inequality, we have:
2xy+2xz+2yz>=2(sqrt(ab)sqrt(ac)+sqrt(ab)sqrt(bc)+sqrt(ac)sqrt(bc))
Substituting this into the previous inequality, we get:
x2+y2+z2+2xy+2xz+2yz>=3(ab+ac+bc)+2(sqrt(ab)sqrt(ac)+sqrt(ab)sqrt(bc)+sqrt(ac)sqrt(bc))
Using the definition of x, y, and z, we get:
(a2+ab+b2)+(a2+ac+c2)+(b2+bc+c2)+2sqrt((a2+ab+b2)(a2+ac+c2))+2sqrt((a2+ab+b2)(b2+bc+c2))+2sqrt((a2+ac+c2)(b2+bc+c2))>=3(ab+ac+bc)+2(sqrt(ab)sqrt(ac)+sqrt(ab)sqrt(bc)+sqrt(ac)sqrt(bc))
Combining like terms and rearranging, we get:
2(sqrt((a2+ab+b2)(a2+ac+c2))+sqrt((a2+ab+b2)(b2+bc+c2))+sqrt((a2+ac+c2)(b2+bc+c2)))>=2(sqrt(ab)sqrt(ac)+sqrt(ab)sqrt(bc)+sqrt(ac)sqrt(bc))
So, the inequality is proven.
Equality occurs when x = y = z, which meansa2+ab+b2=a2+ac+c2=