If we use (x+) to indicate the following sum
1 + 2 + 3 + ... + x
then find the value of k in the following equation
(28+) - (27+) = (k+)
The sum of the first "k" positive integers is given by : (k)(k + 1)/2
So (x +) where x = 28 is just (28)(29) /2 and (x+) where x = 27 is just (27)(28)/2
So we have
(28)(29)/2 - (270(28)/2 ..... factor out 28/2
[28/2] [ 29 - 27]=
[14] [2] = 28
And notice that :
1 + 2 + 3 + 4 + 5 + 6 + 7 = 28
So this equals the sum of the first seven positive integers = (7)(8)/2 = 56/2 = (7+)
(28+) - (27+) =
(28)(29)/ 2 - (27)(28)/2 =
(28) [ (29) - (27) ] / 2 =
(28/2) (2) = 28 = (7)(8)/ 2 = (7+) ...so k = 7
I AN NOT GETTING WHAT YOU HAVE GIVEN PLEASE EXPLAIN YOUR ANS TO ME MORE BRIEFLY
If we use (x+) to indicate the following sum
1 + 2 + 3 + ... + x
then find the value of k in the following equation
(28+) - (27+) = (k+)
(28+)−(27+)=(k+)=28=Sk(28+)=S28(27+)=S27S28−S27=t28=28=SkSk=t1⋅(k1)+d⋅(k2)t1=d=1Sk=(k1)+(k2)=(k+12)=28k(k+1)2=28k(k+1)=56k2+k−56=0⇒k=−1+152=7Sk=(k+)=(7+)(7+)=1+2+3+4+5+6+7=28
The sum of the first "k" positive integers is given by : (k)(k + 1)/2
So (x +) where x = 28 is just (28)(29) /2 and (x+) where x = 27 is just (27)(28)/2
So we have
(28)(29)/2 - (270(28)/2 ..... factor out 28/2
[28/2] [ 29 - 27]=
[14] [2] = 28
And notice that :
1 + 2 + 3 + 4 + 5 + 6 + 7 = 28
So this equals the sum of the first seven positive integers = (7)(8)/2 = 56/2 = (7+)