If the point (x,3) is equidistant from (3,-2) and (7,4), find the value of x.
If the point (x,3) is equidistant from (3,-2) and (7,4), find the value of x.
→X=(x3)→P1=(3−2)→P2=(74)
|→X−→P1|=|→P2−→X||(x3)−(3−2)|=|(74)−(x3)||(x−33−(−2))|=|(7−x4−3)||(x−35)|=|(7−x1)|(x−3)2+52=(7−x)2+12(x−3)2+25=(7−x)2+1x2−6x+9+25=49−14x+x2+1x2−6x+34=50−14x+x2−6x+34=50−14x|+14x−348x=16|:8x=2
The equidistant is √1+25=√26=5.09901951359