how to calculate x in steps?
π4=cos−1(2x21+x4)
π4=cos−1(2x21+x4)|cos()cos(π4)=cos(cos−1(2x21+x4))cos(π4)=2x21+x4|cos(π4)=1√21√2=2x21+x4|⋅(1+x4)1√2⋅(1+x4)=2x2|⋅√21+x4=2⋅√2⋅x2|−2⋅√2⋅x2x4−2⋅√2⋅x2+1=0z2−2⋅√2⋅z+1=0|z=x2z=2⋅√2±√(−2⋅√2)2−4⋅12z=2⋅√2±√8−42z=2⋅√2±√42z=2⋅√2±22z=√2±1|x=±√zx=±√√2±1x1=+√√2+1=1.55377397403x2=+√√2−1=0.64359425291x3=−√√2+1=−1.55377397403x4=−√√2−1=−0.64359425291
how to calculate x in steps?
π4=cos−1(2x21+x4)
π4=cos−1(2x21+x4)|cos()cos(π4)=cos(cos−1(2x21+x4))cos(π4)=2x21+x4|cos(π4)=1√21√2=2x21+x4|⋅(1+x4)1√2⋅(1+x4)=2x2|⋅√21+x4=2⋅√2⋅x2|−2⋅√2⋅x2x4−2⋅√2⋅x2+1=0z2−2⋅√2⋅z+1=0|z=x2z=2⋅√2±√(−2⋅√2)2−4⋅12z=2⋅√2±√8−42z=2⋅√2±√42z=2⋅√2±22z=√2±1|x=±√zx=±√√2±1x1=+√√2+1=1.55377397403x2=+√√2−1=0.64359425291x3=−√√2+1=−1.55377397403x4=−√√2−1=−0.64359425291