Processing math: 100%
 
+0  
 
+2
969
2
avatar+142 

Find all values a for which there exists an ordered pair (a,b) satisfying the following system of equations:

 

a+ab2=40b

aab2=32b


List only the values for a

 

 

Please help me.

 Jul 7, 2019
edited by KeyLimePi  Jul 7, 2019
 #1
avatar+9488 
+5

a + ab2  =  40b

a - ab2  =  -32b

 

The purple values are equal and the blue values are equal.  purple + blue  =  purple + blue

 

(a + ab2) + (a - ab2)  =  40b + -32b

 

(a + ab2) + (a - ab2)  =  40b + -32b

 

2a  =  8b

 

14a  =  b

 

Now we can substitute this value for  b  into one of the original equations.

 

a + ab2  =  40b

                                    Substitute   14a   in for   b

a + a(14a)2  =  40(14a)

                                    Simplify both sides of the equation.

a + 116a3   =   10a

                                    Multiply through by  16

16a + a3  =  160a

                                    Subtract  16a  and subtract  a3  from both sides

0  =  144a - a3

                                    Factor  a  out of both terms on the right side

0  =  a( 144 - a2 )

                                           Factor   144 - a2   as a difference of squares

0  =  a( 12 - a )( 12 + a )

                                           Set each factor equal to  0  and solve for  a

0  =  a ___ or ___ 12 - a  =  0 ___ or ___ 12 + a  =  0

 

 

a  =  0   a  =  12   a  =  -12  

 

Here is another answer for this question:  https://web2.0calc.com/questions/help-plz_7742

 Jul 7, 2019
 #2
avatar+9675 
+3

{a+ab2=40b(1)aab2=32b(2)(1)+(2):2a=8bb=a4Substitute b=a4 into (1),a+a(a216)=40(a4)a3144a=0a(a+12)(a12)=0a{0,12,12}

.
 Jul 8, 2019

2 Online Users

avatar