Let a^2=\frac{16}{44}$ and $b^2=\frac{(2+\sqrt{5})^2}{11}$, where $a$ is a negative real number and $b$ is a positive real number. If (a+b)^3 can be expressed in the simplified form $\frac{x\sqrt{y}}{z}$ where $x$, $y$, and $z$ are positive integers, what is the value of the sum $x+y+z$?
Let a2=1644 and b2=(2+√5)211 , where a is a negative real number and b is a positive real number.
If (a+b)3 can be expressed in the simplified form x√yz where x, y, and z are positive integers,
what is the value of the sum x√yzx+y+z ?
______________________________________
a=−√1644=−42√11=−2√11 b=√(2+√5)211=2+√5√11 (a+b)3=(−2√11+2+√5√11)3 (a+b)3=(−2+2+√5√11)3 (a+b)3=(√5√11)3 (a+b)3=√5√11⋅√5√11⋅√5√11 (a+b)3=5√511√11 (a+b)3=5√511√11⋅√11√11 (a+b)3=5√55121
Now it is in the form x√yz where x, y, and z are positive integers.
x + y + z = 5 + 55 + 121 = 181
Let a2=1644 and b2=(2+√5)211 , where a is a negative real number and b is a positive real number.
If (a+b)3 can be expressed in the simplified form x√yz where x, y, and z are positive integers,
what is the value of the sum x√yzx+y+z ?
______________________________________
a=−√1644=−42√11=−2√11 b=√(2+√5)211=2+√5√11 (a+b)3=(−2√11+2+√5√11)3 (a+b)3=(−2+2+√5√11)3 (a+b)3=(√5√11)3 (a+b)3=√5√11⋅√5√11⋅√5√11 (a+b)3=5√511√11 (a+b)3=5√511√11⋅√11√11 (a+b)3=5√55121
Now it is in the form x√yz where x, y, and z are positive integers.
x + y + z = 5 + 55 + 121 = 181