Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+2
1719
1
avatar

Let a^2=\frac{16}{44}$ and $b^2=\frac{(2+\sqrt{5})^2}{11}$, where $a$ is a negative real number and $b$ is a positive real number. If (a+b)^3 can be expressed in the simplified form $\frac{x\sqrt{y}}{z}$ where $x$, $y$, and $z$ are positive integers, what is the value of the sum $x+y+z$?

 May 22, 2019

Best Answer 

 #1
avatar+9488 
+6

Let  a2=1644  and  b2=(2+5)211 , where  a  is a negative real number and  b  is a positive real number.

If  (a+b)3  can be expressed in the simplified form  xyz  where  xy,  and  z  are positive integers,

what is the value of the sum  xyzx+y+z ?

______________________________________

 

a=1644=4211=211 b=(2+5)211=2+511  (a+b)3=(211+2+511)3 (a+b)3=(2+2+511)3 (a+b)3=(511)3 (a+b)3=511511511 (a+b)3=551111 (a+b)3=5511111111 (a+b)3=555121

 

Now it is in the form  xyz  where  x,  y,  and  z  are positive integers.

 

x + y + z  =  5 + 55 + 121  =  181

 May 22, 2019
 #1
avatar+9488 
+6
Best Answer

Let  a2=1644  and  b2=(2+5)211 , where  a  is a negative real number and  b  is a positive real number.

If  (a+b)3  can be expressed in the simplified form  xyz  where  xy,  and  z  are positive integers,

what is the value of the sum  xyzx+y+z ?

______________________________________

 

a=1644=4211=211 b=(2+5)211=2+511  (a+b)3=(211+2+511)3 (a+b)3=(2+2+511)3 (a+b)3=(511)3 (a+b)3=511511511 (a+b)3=551111 (a+b)3=5511111111 (a+b)3=555121

 

Now it is in the form  xyz  where  x,  y,  and  z  are positive integers.

 

x + y + z  =  5 + 55 + 121  =  181

hectictar May 22, 2019

0 Online Users