Help I have trouble with complex numbers.
In the complex plane, the complex numbers $2+i$, $a$, $7-3i$, $b$ form the vertices of a square, in counterclockwise order. Find the following quantities, in rectangular form.
b/a = ?
The vertices of the square are given as complex numbers: $2+i$, $a$, $7-3i$, and $b$. Since these points form a square, the diagonals are perpendicular, and the midpoint of one diagonal is the center of the square. Let's use this information to solve for a and b.
The midpoint of the diagonal connecting $2+i$ and $7-3i$ can be found as:
Midpoint=(2+i)+(7−3i)2=9−2i2=92−i.
This midpoint should be equal to the midpoint of the diagonal connecting $a$ and $b$:
a+b2=92−i.
From this equation, we can solve for b:
b=9−2a−2i.
Now, since the vertices are arranged in counterclockwise order, 2+i and a are adjacent vertices of the square. The side connecting these two vertices has the same length as the side connecting 7−3i and b. This gives us the following relationship:
∥2+i−a∥=∥7−3i−b∥.
Substituting the expressions for a and b, we get:
∥2+i−a∥=∥7−3i−(9−2a−2i)∥.
Simplify the expressions:
∥2+i−a∥=∥2a−2i∥.
Since the lengths of the sides are equal, the magnitudes of the differences are equal:
∥2+i−a∥=∥2a−2i∥.
Square both sides of the equation:
(2+i−a)(¯2+i−a)=(2a−2i)(¯2a−2i).
Expand both sides:
(2+i−a)(2−i−ˉa)=(2a−2i)(2a+2i).
Simplify further:
(4−a−ai+2i−2i+i2+ˉa−ˉai+aˉa)=(4a2−4i2).
Since i2=−1:
(4−2ai+a2+ˉa−aˉa)=(4a2+4).
Rearrange the terms:
(4+4a2)−2ai+a2+ˉa−aˉa=4a2+4.
Simplify and collect the real and imaginary terms:
5−3a2−2ai+ˉa−aˉa=0.
Since a is a real number, ˉa=a:
5−3a2−2ai+a−a2=0.
Combine like terms:
5−4a2−2ai+a=0.
Solve for a:
5−4a2−ai=−a.
5−4a2=−ai+a.
5−4a2=a(1−i).
a=5−4a21−i.
Multiply the numerator and denominator by the conjugate of the denominator to rationalize it:
a=(5−4a2)(1+i)(1−i)(1+i).
a=5+5i−4a2−4a2i2.
a=5−8a2+5i−4a2i2.
Equating the real and imaginary parts separately:
a=5−8a22(real part),
a=5−4a22(imaginary part).
Solve each equation for a:
5−8a2=2a.
5−4a2=2a.
For the first equation:
8a2+2a−5=0.
Using the quadratic formula:
a=−2±√22−4⋅8⋅(−5)2⋅8.
Simplify under the square root:
a=−2±√4+16016.
a=−2±√16416.
Since 164 is not a perfect square, we'll leave it as is:
a=−2±√41√416.
a=−1±√418.
For the second equation:
4a2+2a−5=0.
Using the quadratic formula again:
a=−2±√22−4⋅4⋅(−5)2⋅4.
Simplify under the square root:
a=−2±√4+808.
a=−2±√848.
Since 84 is not a perfect square, we'll leave it as is:
a=−2±√4√218.
a=−1±2√218.
So, the possible values for a are:
a=−1+√418,a=−1−√418,a=−1+2√218,a=−1−2√218.
Now, we have the expression b/a. Let's find the possible values of b for each of the values of a:
For a=−1+√418:
b=9−2a−2i=9−2(−1+√418)−2i.
Simplify:
b=9+√414−2i.
For a=−1−√418:
b=9−2a−2i=9−2(−1−√418)−2i.
Simplify:
b=9−√414−2i.
For a=−1+2√218:
b=9−2a−2i=9−2(−1+2√218)−2i.
Simplify:
b=9+2√214−2i.
For a=−1−2√218:
b=9−2a−2i=9−2(−1−2√218)−2i.
Simplify:
b=9−2√214−2i.
So, the possible values of b/a for each value of a are:
For a=−1+√418:
ba=9+√414−2i−1+√418=8(9+√41)−8(2i)4(−1+√41).
Simplify:
ba=72+8√41−16i−4+4√41.
For a=−1−√418:
ba=9−√414−2i−1−√418=8(9−√41)−8(2i)4(−1−√41).
Simplify:
ba=72−8√41−16i−4−4√41.
For a=−1+2√218:
ba=9+2√214−2i−1+2√218=8(9+2√21)−8(2i)4(−1+2√21).
Simplify:
ba=72+16√21−16i−4+8√21.
For a=−1−2√218:
\[\frac{b}{a} = \frac{\frac{9 - 2\sqrt{21}}{4} - 2i}{\frac{-1 - 2\sqrt{21}}{8}} = \frac{8(9 - 2\sqrt
{21}) - 8(2i)}{4(-1 - 2\sqrt{21})}.\]
Simplify:
ba=72−16√21−16i−4−8√21.
In conclusion, the possible values of b/a for the given values of a are:
ba=72+8√41−16i−4+4√41,ba=72−8√41−16i−4−4√41,ba=72+16√21−16i−4+8√21,ba=72−16√21−16i−4−8√21.