Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
801
3
avatar+31 

 I don't understand this

 Mar 5, 2017

Best Answer 

 #1
avatar
+5

Using cos Law, we can easily find TU.

 

TU=242+12222412cos(38)

TU ≈ 16.3127497964741677

 

Note: in cos(38), the 38 is in degrees, not radians.

 Mar 5, 2017
edited by Guest  Mar 5, 2017
 #1
avatar
+5
Best Answer

Using cos Law, we can easily find TU.

 

TU=242+12222412cos(38)

TU ≈ 16.3127497964741677

 

Note: in cos(38), the 38 is in degrees, not radians.

Guest Mar 5, 2017
edited by Guest  Mar 5, 2017
 #2
avatar+9488 
+6

This is a Law of Cosines problem.

 

Law of Cosines:

c2=a2+b22abcosCc=TU,a=24,b=12,C=38 (a and b are interchangeable, just pick one and stick with it.)TU2=242+1222(24)(12)cos38TU2=576+144576cos38TU2=720576cos38TU=720576cos38TU16.3 mm

 Mar 5, 2017
 #3
avatar+26397 
+1

Help

 

Let TUV=φ

tan(φ)=24sin(38)1224cos(38)tan(φ)=240.6156614753312240.78801075361tan(φ)=14.77587540786.91225808656|II. Quadranttan(φ)=2.13763363908φ=64.9294774677+180φ=115.070522532

 

TU = ?

sin(38)TU=sin(φ)24sin(38)TU=sin(115.070522532)24TU=24sin(38)sin(115.070522532)TU=240.615661475330.90578692079TU=16.3127497965

 

TU16.3 mm

 

laugh

 Mar 6, 2017

1 Online Users

avatar