Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1086
1
avatar

Find the maximum area of a rectangle that can be inscribed in a unit circle.

 Jun 3, 2019

Best Answer 

 #1
avatar+9488 
+3

Let half the width of the rectangle  =  w

Then half the length of the rectangle  =  √[ 1 - w2 ]

And let the area of the rectangle  =  A

 

A = 4w1w2 dAdw = 4ddw(w1w2) dAdw = 4[(w)(12)(1w2)12(2w)+(1w2)(1)] dAdw = 4[w21w2+1w2] dAdw = 4[w21w2+1w21w2] dAdw = 48w21w2

 

Now let's find what value of  w  makes  dAdw  be  0 .

 

0 = 48w21w2 0 = 48w2and1w2  0that isw  ±1 8w2 = 4 w2 = 12 w = 12orw = 12

 

We know half the width of the rectangle can't be negative,

and by looking at a graph https://www.desmos.com/calculator/txezockcml

we can confirm that the maximum value of  A  occurs when  w=12 .

 

When   w=12  ,

 

A = 4w1w2 = 412112 = 41212 = 412 = 2

 

The maximum area is  2  sq units.

 Jun 3, 2019
 #1
avatar+9488 
+3
Best Answer

Let half the width of the rectangle  =  w

Then half the length of the rectangle  =  √[ 1 - w2 ]

And let the area of the rectangle  =  A

 

A = 4w1w2 dAdw = 4ddw(w1w2) dAdw = 4[(w)(12)(1w2)12(2w)+(1w2)(1)] dAdw = 4[w21w2+1w2] dAdw = 4[w21w2+1w21w2] dAdw = 48w21w2

 

Now let's find what value of  w  makes  dAdw  be  0 .

 

0 = 48w21w2 0 = 48w2and1w2  0that isw  ±1 8w2 = 4 w2 = 12 w = 12orw = 12

 

We know half the width of the rectangle can't be negative,

and by looking at a graph https://www.desmos.com/calculator/txezockcml

we can confirm that the maximum value of  A  occurs when  w=12 .

 

When   w=12  ,

 

A = 4w1w2 = 412112 = 41212 = 412 = 2

 

The maximum area is  2  sq units.

hectictar Jun 3, 2019

1 Online Users