Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
887
1
avatar

The points (3,-2)  and (-2,3) lie on a circle whose center is on the x-axis. What is the radius of the circle?

 

THANK U

 Jul 4, 2019

Best Answer 

 #1
avatar+9488 
+5

Let the center of the circle be  (h, 0)

 

distance between  (h, 0)  and  (3, -2)   =   distance between (h, 0)  and  (-2, 3)

 

(20)2+(3h)2 = (2h)2+(30)2 (20)2+(3h)2=(2h)2+(30)2 (20)2(30)2=(2h)2(3h)2

 

Notice here that if  h = 0  both sides of the equation are identical.

 

If you want to, you can expand both sides to also find that  h = 0.

 

So the center of the circle is  (0, 0)

 

And the radius  =  (20)2+(30)2 = 4+9 = 13

 

Here's a graph: https://www.desmos.com/calculator/najnuubd4e

 Jul 4, 2019
 #1
avatar+9488 
+5
Best Answer

Let the center of the circle be  (h, 0)

 

distance between  (h, 0)  and  (3, -2)   =   distance between (h, 0)  and  (-2, 3)

 

(20)2+(3h)2 = (2h)2+(30)2 (20)2+(3h)2=(2h)2+(30)2 (20)2(30)2=(2h)2(3h)2

 

Notice here that if  h = 0  both sides of the equation are identical.

 

If you want to, you can expand both sides to also find that  h = 0.

 

So the center of the circle is  (0, 0)

 

And the radius  =  (20)2+(30)2 = 4+9 = 13

 

Here's a graph: https://www.desmos.com/calculator/najnuubd4e

hectictar Jul 4, 2019

2 Online Users

avatar