Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
723
1
avatar+1246 

If the polynomial $x^2+bx+c$ has exactly one real root and $b=c+1$, find the value of the product of all possible values of $c$.

 Jun 3, 2018
 #1
avatar+985 
+1

Hey lightning!

 

If a quadratic equation has exxactly one real root, the discriminant is equal to zero. 

 

In the quadratic equation: ax2+bx+c

 

The discriminant is: b24ac.

 

In this specific problem, the discriminant is b24c, since a=1.

 

From the information given, we can set up the systems:

 

b24c=0,b=c+1.

 

Solving the systems, we can substitute:

 

(c+1)24c=0c=1

 

I hope this helped,

 

Gavin

 Jun 3, 2018

0 Online Users