Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
958
4
avatar+4624 

What is the remainder when $5^{137}$ is divided by 8?

 Aug 11, 2016

Best Answer 

 #3
avatar+9675 
+6

5^1 mod 8 = 5

5^2 mod 8 = 1

5^3 mod 8 = 5

therefore 5^(2n+1) mod 8 = 5

therefore 5^137 mod 8 = 5.

 Aug 11, 2016
 #1
avatar
+1

What is the remainder when $5^{137}$ is divided by 8?

 

5^137 mod 8 =5 Remainder.

 Aug 11, 2016
 #2
avatar
+1

5^137 =

573971 8509874450 7225035963 7315549647 3723952913 9262086011 1695169081 2584274681 2850236892 7001953125 / 8 =71746 4813734306 3403129495 4664443705 9215494114 2407760751 3961896135 1573034335 1606279611 5875244140.625

Since .625 x 8=5 Remainder.

 Aug 11, 2016
 #3
avatar+9675 
+6
Best Answer

5^1 mod 8 = 5

5^2 mod 8 = 1

5^3 mod 8 = 5

therefore 5^(2n+1) mod 8 = 5

therefore 5^137 mod 8 = 5.

MaxWong Aug 11, 2016
 #4
avatar+26396 
+6

What is the remainder when $5^{137}$ is divided by 8?

 

Because the gcd(5,8)=15φ(8)1(mod8)

 

φ(n) is the Euler's totient function

 

8=23φ(8)=8(112)φ(8)=4541(mod8)

 

5137(mod8)5434+1(mod8)54345(mod8)(54)345(mod8)|541(mod8)1345(mod8)15(mod8)5(mod8)

 

The remainder is 5

 

laugh

 Aug 11, 2016

0 Online Users