What is the remainder when $5^{137}$ is divided by 8?
5^137 mod 8 =5 Remainder.
5^137 =
573971 8509874450 7225035963 7315549647 3723952913 9262086011 1695169081 2584274681 2850236892 7001953125 / 8 =71746 4813734306 3403129495 4664443705 9215494114 2407760751 3961896135 1573034335 1606279611 5875244140.625
Since .625 x 8=5 Remainder.
5^1 mod 8 = 5
5^2 mod 8 = 1
5^3 mod 8 = 5
therefore 5^(2n+1) mod 8 = 5
therefore 5^137 mod 8 = 5.
What is the remainder when $5^{137}$ is divided by 8?
Because the gcd(5,8)=15φ(8)≡1(mod8)
φ(n) is the Euler's totient function
8=23φ(8)=8⋅(1−12)φ(8)=454≡1(mod8)
5137(mod8)≡54⋅34+1(mod8)≡54⋅34⋅5(mod8)≡(54)34⋅5(mod8)|54≡1(mod8)≡134⋅5(mod8)≡1⋅5(mod8)≡5(mod8)
The remainder is 5