+0  
 
0
925
4
avatar+235 

There are exactly four positive integers $n$ such that \[\frac{(n + 1)^2}{n + 23}\] is an integer. Compute the largest such $n$.

 Apr 20, 2018
 #1
avatar+981 
+4

Hi Rollingblade!

 

The first step in this problem is to divide the numerator by its denominator. 

 

We have:

 

\(\begin{align*} \frac{(n+1)^2}{n+23} &= \frac{n^2 +2n + 1}{n+23}\\ &= \frac{n^2 + 23n - 21n+1}{n+23}\\ &= \frac{n^2 +23n}{n+23} -\frac{21n}{n+23} + \frac{1}{n+23}\\ &=\frac{n(n+23)}{n+23} - 21\cdot \frac{n+23-23}{n+23}+ \frac{1}{n+23}\\ &=n - 21\left(\frac{n+23}{n+23} - \frac{23}{n+23}\right)+ \frac{1}{n+23}\\ &= n - 21 + \frac{21\cdot 23}{n+23}+ \frac{1}{n+23}\\ &=n-21 + \frac{484}{n+23}. \end{align*} \)

 

This means that n+23 must be a factor of 484 = 2^2 *11^2

 

The largest factor of 484 is 484.

 

So n = 484 - 23 = 461.

 

I hope this helps. 

 Apr 20, 2018
 #2
avatar+128474 
+1

Very nice, GYanggg  !!!!!

 

 

cool cool cool

CPhill  Apr 20, 2018
 #3
avatar+981 
+2

Thanks Chris!

 

It's always nice when someone complements your work!

GYanggg  Apr 20, 2018
 #4
avatar+128474 
+2

Here's one more way using polynomial division

 

(n + 1)^2                n^2 + 2n  + 1

_______   =          ___________

  n  +  23                 n  +  23

 

 

 

                  n    -   21

n + 23    [   n^2   +   2n     +   1   ]

                  n^2   +  23n

                 __________________

                             -21n   +    1

                             -21n   -  483

                            ___________

                                          484

 

n -  21    +        484

                     ________

                       n  + 23         

 

 

And note that, as GYanggg found, the largest n that makes the last fraction an integer is when n = 461

 

 

cool cool cool

 Apr 20, 2018

2 Online Users

avatar
avatar