Let z=−8+15i and w=6−8i. Compute z¯zw¯w,where the bar represents the complex conjugate.
z¯zw¯w
So we have
[-8 + 15 i ] [ -8 - 15i ] 64 - 225i^2 64 - 225(-1) 289
_________________ = ___________ = ___________ = ______
[ 6 - 8i ] [ 6 + 8i ] 36 - 64i^2 36 - 64(-1) 100
This video really helped me understand: https://www.youtube.com/watch?v=BZxZ_eEuJBM
If z=−8+15i then ¯z=−8−15i
If w=6−8i then ¯w=6+8i
And so...
z¯zw¯w = (−8+15i)(−8−15i)(6−8i)(6+8i) = (−8)2−(15i)2(6)2−(8i)2 = 64+22536+64 = 289100
Just like CPhill found.