Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
708
2
avatar

23*d = 1mod66

 

what is d

 Sep 18, 2015
 #1
avatar
0

d = 23+66 n

d=23

 Sep 18, 2015
 #2
avatar+26396 
0

23*d = 1mod66

 

Because gcd(23,66) = 1 we can calculate the modulo inverse:

 

23d1(mod66)d123(mod66)d231(mod66)

 

 

We use the Extended Euclidean Algorithm to get d:

 

66=232+20or(4)[66232]=2023=201+3or(3)[2320]=320=36+2or(2)[2018]=23=21+1or(1)[32]=1(1)32=1|(2)2=[2018]3[2018]=1320+18=13(1+6)20=13720=1|(3)3=[2320][2320]720=123720720=1237208=1|(4)20=[66232]237[66232]8=1237668+2316=12323668=1|(mod66)23231(mod66)231(mod66)2323d1(mod66)d=23

 

All Solutions: d23(mod66)ord23=n66d=23±n66nN

laugh

 Sep 18, 2015
edited by heureka  Sep 18, 2015

0 Online Users