Processing math: 100%
 
+0  
 
+1
840
3
avatar+753 

Since no one answered my last question I'm going to post it again. 

I have 3 pieces of candy to place in 4 lunch boxes. In how many ways can I do this if exactly two of the candies are the same (but the third is different) and all of the lunch boxes are different? Same means indistinguishable and different means distinguishable.

Thanks!

 Mar 6, 2018
 #1
avatar+26397 
+4

Since no one answered my last question I'm going to post it again. 

I have 3 pieces of candy to place in 4 lunch boxes.

In how many ways can I do this if exactly two of the candies are the same (but the third is different)

and all of the lunch boxes are different?

Same means indistinguishable and different means distinguishable.

Thanks!

 

Let candi 1 = sort a

Let candi 2 = sort a

Let candi 3 = sort b

 

Box 1Box 2Box 3Box 41baa2baa3baa4aba5aba6baa7aab8aba9aba10aab11aab12aab

 

12 ways

 

laugh

 Mar 6, 2018
 #2
avatar+2234 
+5

Heureka, your answer is correct if a box is restricted to a maximum of one piece of candy.

nCr(4, 1) +  nCr(3, 2) = 12

Reasoning:

There are nCr(4, 1)  =  4 ways to place the unique piece of candy in one of the four (4) boxes.  Then the 2 indistinguishable candies can be placed in the other 3 boxes nCr(3, 2)  = 8 ways.  There are (4+8) = 12 ways to distribute the candies.

 

 

If there are no restrictions on the maximum then:

 

(4!2!)(2)+(4!2!)+(4)Reasoning:All candy in 1 of 4 boxes (4 ways)2 combinations (XX|Y & XY|X) distributed to boxes in (2)(4*3) = (2)(4!/2!) =(24) ways;and 1 candy to each box distributed to boxes in (1)(4*3*2)/2 = 4!/2! = (12) ways.Total 4+24+12 = 40 ways.

 

(Adapted from Nauseated’s solution https://web2.0calc.com/questions/i-really-need-help-please-i-have-no-idea-how-to-do-it-sorry#r4)

 

 

GA

 Mar 6, 2018
edited by GingerAle  Mar 6, 2018
 #3
avatar+26397 
+3

Thank You, GA.

 

Since no one answered my last question I'm going to post it again.
I have 3 pieces of candy to place in 4 lunch boxes.
In how many ways can I do this if exactly two of the candies are the same (but the third is different)
and all of the lunch boxes are different?
Same means indistinguishable and different means distinguishable.

 

Let candi 1 = sort a
Let candi 2 = sort a
Let candi 3 = sort b

 

Box 1Box 2Box 3Box 41baa2baa3baa4aba5aba6baa7aab8aba9aba10aab11aab12aab13baa14baa15baa16aba17baa18baa19aba20aba21baa22aba23aba24aba25baa26baa27baa28baa29aab30aab31aab32baa33aab34aab35baa36baa37aab38baa39baa40baa

 

40 ways

 

laugh

heureka  Mar 6, 2018
edited by heureka  Mar 6, 2018

1 Online Users