If the two roots of the quadratic $7x^2+3x+k$ are $\frac{-3\pm i\sqrt{299}}{14}$, what is $k$?
If the two roots of the quadratic $7x^2+3x+k$ are $\frac{-3\pm i\sqrt{299}}{14}$,
what is $k$?
7x2+3x+k=0|:7x2+37x+k7⏟=x1x2=0k7=x1x2|x1=−3+i√29914x2=−3−i√29914k7=(−3+i√299)14⋅(−3−i√299)14k7=(−3+i√299)(−3−i√299)14⋅14k7=9−i2⋅29914⋅14|i2=−1k7=9−(−1)⋅29914⋅14k7=9+⋅29914⋅14k7=30814⋅14k=7⋅30814⋅14k=7⋅2214k=222k=11