[cos(a)cos(b)+sin(a)sin(b)][cos(a)cos(b)-sin(a)sin(b)]=?
[ cos(a)cos(b)+sin(a)sin(b) ]⋅[ cos(a)cos(b)−sin(a)sin(b) ]=cos2(a)cos2(b)−cos(a)cos(b)sin(a)sin(b)+sin(a)sin(b)cos(a)cos(b)−sin2(a)sin2(b)=cos2(a)cos2(b)+0−sin2(a)sin2(b)=cos2(a)cos2(b)−sin2(a)sin2(b)=[ 1−sin2(a) ]cos2(b)−sin2(a)[ 1−cos2(b) ]=cos2(b)−sin2(a)cos2(b)−sin2(a)+sin2(a)cos2(b)=cos2(b)−sin2(a)−sin2(a)cos2(b)+sin2(a)cos2(b)=cos2(b)−sin2(a)+0=cos2(b)−sin2(a)
[cos(a)cos(b)+sin(a)sin(b)][cos(a)cos(b)-sin(a)sin(b)]=?
[ cos(a)cos(b)+sin(a)sin(b) ]⋅[ cos(a)cos(b)−sin(a)sin(b) ]=cos2(a)cos2(b)−cos(a)cos(b)sin(a)sin(b)+sin(a)sin(b)cos(a)cos(b)−sin2(a)sin2(b)=cos2(a)cos2(b)+0−sin2(a)sin2(b)=cos2(a)cos2(b)−sin2(a)sin2(b)=[ 1−sin2(a) ]cos2(b)−sin2(a)[ 1−cos2(b) ]=cos2(b)−sin2(a)cos2(b)−sin2(a)+sin2(a)cos2(b)=cos2(b)−sin2(a)−sin2(a)cos2(b)+sin2(a)cos2(b)=cos2(b)−sin2(a)+0=cos2(b)−sin2(a)