Processing math: 100%
 
+0  
 
+1
927
2
avatar+39 

Let a,b,c,d,e,f be nonnegative real numbers such that a2+b2+c2+d2+e2+f2=6 and ab+cd+ef=3. What is the maximum value of a+b+c+d+e+f?

 

Hi! Thanks for the help!

 

Please provide a full solution so I may understand how to do this problem step by step.

 

I think that you have to use Cauchy-Schawz in order to find this but I'm not sure. 

 Nov 8, 2018
 #1
avatar+6252 
+2

let u=(a,c,e), v=(b,d,f)we are given that uu+vv=6uv=3and we are asked for max of (u+v)(1,1,1)

 

By Cauchy-Schwarz|(u+v)(1,1,1)|2(u+v)(u+v)×(1,1,1)(1,1,1)=(uu+vv+2uv)(3)=(6+2(3))(3)=36

 

so (u+v)(1,1,1)6with the maximum occurring at 6thus the maximum of a+b+c+d+e+f=6

.
 Nov 8, 2018
 #2
avatar+39 
+1

Thank you!

 Nov 8, 2018

1 Online Users