Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
908
2
avatar+77 

let f(x) = 6x^2 +x. Use the definition of the derivative as the limit of the difference quoetient to find f1(x).

 Jul 20, 2016

Best Answer 

 #2
avatar+26396 
+10

let f(x) = 6x^2 +x. Use the definition of the derivative as the limit of the difference quoetient to find f '(x).

 

f(x)=6x2+xf(x+h)=6(x+h)2+(x+h)The difference quotient is:ΔxΔy=f(x+h)f(x)h=6(x+h)2+(x+h)(6x2+x)h=6(x+h)2+x+h6x2xh=6(x+h)2+h6x2h=6(x2+2xh+h2)+h6x2h=6x2+12xh+6h2+h6x2h=12xh+6h2+hh=h(12x+6h+1)hΔxΔy=12x+6h+1

 

f(x)=dydxdydx=limh0(12x+6h+1)dydx=(12x+60+1)dydx=(12x+1)f(x)=12x+1

 

laugh

 Jul 20, 2016
 #1
avatar
+5

Find the derivative of the following via implicit differentiation:
d/dx(f(x)) = d/dx(x+6 x^2)
The derivative of f(x) is f'(x):
f'(x) = d/dx(x+6 x^2)
Differentiate the sum term by term and factor out constants:
f'(x) = d/dx(x)+6 d/dx(x^2)
The derivative of x is 1:
f'(x) = 6 (d/dx(x^2))+1
Use the power rule, d/dx(x^n) = n x^(n-1), where n = 2: d/dx(x^2) = 2 x:
f'(x) = 1+6 2 x
Simplify the expression:
f'(x) = 1+12 x
Expand the left hand side:
Answer: |  f'(x) = 1+12x

 Jul 20, 2016
 #2
avatar+26396 
+10
Best Answer

let f(x) = 6x^2 +x. Use the definition of the derivative as the limit of the difference quoetient to find f '(x).

 

f(x)=6x2+xf(x+h)=6(x+h)2+(x+h)The difference quotient is:ΔxΔy=f(x+h)f(x)h=6(x+h)2+(x+h)(6x2+x)h=6(x+h)2+x+h6x2xh=6(x+h)2+h6x2h=6(x2+2xh+h2)+h6x2h=6x2+12xh+6h2+h6x2h=12xh+6h2+hh=h(12x+6h+1)hΔxΔy=12x+6h+1

 

f(x)=dydxdydx=limh0(12x+6h+1)dydx=(12x+60+1)dydx=(12x+1)f(x)=12x+1

 

laugh

heureka Jul 20, 2016

2 Online Users