2cosθ+sin(2θ)=0
Let's use the double-angle formula for sin which says sin(2θ)=2sinθcosθ
2cosθ+2sinθcosθ=0
Now we can factor 2 cos θ out of both terms on the left side of the equation.
2cosθ(1+sinθ)=0 (Notice if we distribute 2 cos θ we get the previous expression)
Set each factor equal to 0 and solve for θ:
2cosθ=0or1+sinθ=0 cosθ=0orsinθ=−1 θ=π2,3π2,5π2,7π2,…orθ=3π2,7π2,11π2,15π2,… θ=90∘,270∘,450∘,630∘,…orθ=270∘,630∘,990∘,1350∘…
The solutions in the interval [0°, 360°) are: 90°, 270°