Question:
Let CA=bLet CB=aLet AB=cLet CM=lLet ∠AMC=φLet ∠CMB=180∘−φ
cos−rule:In △ AMCb2=l2+c24−2lc2cos(φ)(1)cos−rule:In △ CMBa2=l2+c24−2lc2cos(180∘−φ)a2=l2+c24+2lc2cos(φ)(2)
(1)+(2)b2+a2=l2+c24−2lc2cos(φ)+l2+c24+2lc2cos(φ)b2+a2=l2+c24+l2+c24b2+a2=2l2+2c24b2+a2=2l2+c22CA2+CB2=2CM2+AB22
Thanks Heureka,
Note that my answer is the same as Heureka's
In triangle ABC, show
CA2+CB2=2CM2+AB22
Consider the triangle as I have drawn it and using Cosine rule.
a2=d2+x2−2dxcos(180−Q)a2=d2+x2+2dxcos(Q)(1) b2=d2+x2−2dxcos(Q)(2)adda2+b2=2d2+2x2Substituting original notationCB2+CA2=2(AB2)2+2CM2CA2+CB2=2CM2+2(AB24)CA2+CB2=2CM2+AB22