Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
564
4
avatar+80 

Question: 

 Aug 10, 2021
 #1
avatar+26396 
+4

Question:

Let CA=bLet CB=aLet AB=cLet CM=lLet AMC=φLet CMB=180φ

 

cosrule:In  AMCb2=l2+c242lc2cos(φ)(1)cosrule:In  CMBa2=l2+c242lc2cos(180φ)a2=l2+c24+2lc2cos(φ)(2)

 

(1)+(2)b2+a2=l2+c242lc2cos(φ)+l2+c24+2lc2cos(φ)b2+a2=l2+c24+l2+c24b2+a2=2l2+2c24b2+a2=2l2+c22CA2+CB2=2CM2+AB22

 

laugh

 Aug 11, 2021
 #2
avatar+80 
+1

Hi! Thank you for answering my question. But could you tell me what the cosine rule is, please? Thank you!

jleung  Aug 11, 2021
 #3
avatar+26396 
+4
heureka  Aug 12, 2021
 #4
avatar+118703 
+1

Thanks Heureka,    laugh

 

Note that my answer is the same as Heureka's    laugh

In triangle ABC, show

CA2+CB2=2CM2+AB22

 

Consider the triangle as I have drawn it and using Cosine rule.

 

a2=d2+x22dxcos(180Q)a2=d2+x2+2dxcos(Q)(1) b2=d2+x22dxcos(Q)(2)adda2+b2=2d2+2x2Substituting original notationCB2+CA2=2(AB2)2+2CM2CA2+CB2=2CM2+2(AB24)CA2+CB2=2CM2+AB22

 

 

 

 Aug 12, 2021

2 Online Users

avatar