Processing math: 100%
 
+0  
 
+5
889
3
avatar

What is the largest integer $n$ such that $7^n$ divides $1000!$ ?

 Mar 13, 2017

Best Answer 

 #2
avatar+26396 
+10

What is the largest integer $n$ such that $7^n$ divides $1000!$ ?

 

In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial  n!

 

see: https://en.wikipedia.org/wiki/Legendre%27s_formula

 


laugh

 Mar 13, 2017
 #1
avatar+130477 
+5

I'll take a stab at this one......

 

Notice that 1000!  has   1000 / 7  =  142  numbers that are divisible by at least one  7

 

And 1000!   has    1000/49  = 20 numbers that are divisible by  7^2  [ 20 additional 7s]

 

And it has    1000/343   =  2   numbers that are divisible by 7^3  [ 2 additional 7s ]

 

So.......the largest n such that 7^n will divide 1000!   =    (142 + 20 + 2)  = 164

 

 

 

cool cool cool

 Mar 13, 2017
 #2
avatar+26396 
+10
Best Answer

What is the largest integer $n$ such that $7^n$ divides $1000!$ ?

 

In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial  n!

 

see: https://en.wikipedia.org/wiki/Legendre%27s_formula

 


laugh

heureka Mar 13, 2017
 #3
avatar+26396 
+10

What is the largest integer $n$ such that $7^n$ divides $1000!$ ?

 

1. We calculate 1000 in base 7:

100010=26267

 

2. The sum of the digits in base 7 is: 2+6+2+6=16

 

3. n= ?

n=1000(sum of the standard base-p digits of 1000)71n=1000166n=164

 

7164 will be divide 1000! and 7164 is one prime factor of 1000! for prime = 7.

 

laugh

heureka  Mar 13, 2017

2 Online Users

avatar