Processing math: 100%
 
+0  
 
-1
1738
1
avatar+379 

The quadratic $\frac43x^2+4x+1$ can be written in the form a(x+b)^2+c, where a,b , and c are constants. What is abc? Give your answer in simplest form.

Thank you!

 Jun 8, 2019

Best Answer 

 #1
avatar+9488 
+4

 =43x2+4x+1

                                                   Factor  43  out of all the terms.

=43(x2+3x+34)

                                                          Add  94  and subtract  94  to complete the square inside the parenthesees.

=43(x2+3x+9494+34)

                                                          Factor   x2+3x+94   as a perfect square trinomial.

=43( (x+32)294+34)

                                                          Combine  94  and  +34

=43( (x+32)264)

                                                   Distribute the  43

=43(x+32)243(64)

                                                   And  43(64) = 2

=43(x+32)22

 

Now the expression is in the form  a(x + b)2 + c  where  a,  b,  and  c  are constants.

 

abc = (43)(32)(2) = (2)(2) = 4 _

 Jun 8, 2019
 #1
avatar+9488 
+4
Best Answer

 =43x2+4x+1

                                                   Factor  43  out of all the terms.

=43(x2+3x+34)

                                                          Add  94  and subtract  94  to complete the square inside the parenthesees.

=43(x2+3x+9494+34)

                                                          Factor   x2+3x+94   as a perfect square trinomial.

=43( (x+32)294+34)

                                                          Combine  94  and  +34

=43( (x+32)264)

                                                   Distribute the  43

=43(x+32)243(64)

                                                   And  43(64) = 2

=43(x+32)22

 

Now the expression is in the form  a(x + b)2 + c  where  a,  b,  and  c  are constants.

 

abc = (43)(32)(2) = (2)(2) = 4 _

hectictar Jun 8, 2019

1 Online Users