Processing math: 100%
 
+0  
 
0
738
5
avatar+4624 

2027!+2028!2028!2029!

 Mar 6, 2017

Best Answer 

 #3
avatar+118703 
+5

Hi Tetre :)

 

2027!+2028!2028!2029!=2027!+2027!20282028!2028!2029=2027!(1+2028)2028!(12029)=2027!(2029)2028!(2028)=(2029)2028(2028)=202920282

 

-2029/(2028*2028) = -0.000493339791246

 Mar 6, 2017
 #1
avatar+3 
0

-4055

 Mar 6, 2017
 #2
avatar+130466 
+5

[ 2027! + 2028!]  / [ 2028! - 2029! ]

 

Note that we can write this as

 

[ (2027!) (1 + 2028) ]  / [ (2027!) ( 2028 - 2028*2029) ] =

 

(1 + 2028) / [ 2028 ( 1 - 2029)]

 

(2029) / [ 2028 (-2028)] =

 

-(2029) / 2028^2  =

 

-2029 / 4,112,784

 

 

cool cool cool

 Mar 6, 2017
 #3
avatar+118703 
+5
Best Answer

Hi Tetre :)

 

2027!+2028!2028!2029!=2027!+2027!20282028!2028!2029=2027!(1+2028)2028!(12029)=2027!(2029)2028!(2028)=(2029)2028(2028)=202920282

 

-2029/(2028*2028) = -0.000493339791246

Melody Mar 6, 2017
 #4
avatar+26396 
0

help please!!!

2027!+2028!2028!2029!

 

2027!+2028!2028!2029!=2028!2028+2028!2028!2028!2029=2028!(12028+1)2028!(12029)=12028+112029=12028+12028=1+202820282=202920282

 

laugh

 Mar 6, 2017
 #5
avatar
0

(2027! + 2028!)/(2028! - 2029!) = (2026!! 2027!! + 2027!! 2028!!) / (2027!! 2028!! - 2028!! 2029!!), where !! = Double factorial. OR: (2027! + 2028!)/(2028! - 2029!) = (Γ(2028) + Γ(2029))/(Γ(2029) - Γ(2030)), where Γ = The Gamma function.

 Mar 6, 2017

2 Online Users