Processing math: 100%
 
+0  
 
+1
966
2
avatar

Find the absolute value of the difference of single-digit integers A and B such that 

 

BBA_6+41B_6+A15_6=A152_6

 

 

Express your answer in base 6.

 Oct 10, 2018
 #1
avatar+6251 
+2

BBA6+41B6+A156=A1526looking at the 1's digit we have, (all numbers will be base 6)A+B+5=2mod6given the possible ranges of A and B we haveA+B=9 with a carry of 2 or A+B=3 with a carry of 1

 

let's suppose the first casethen looking at the 6's digit we haveB+1+1+2=5mod6B+4=5mod6B=7 or B=1well B=7 is clearly out as B<6, and A+B=9, which would make A=8, which is also out

 

so let's assume the 2nd caselooking at the 6's digit we haveB+1+1+1=5mod6B+3=5mod6B=8 or B=2again B=8 is clearly out. If B=2 then A=1 and this seems like a solution

 

checking we have 221+412+115=1152 all in base 6

 

|AB|=|12|=1

.
 Oct 10, 2018
edited by Rom  Oct 10, 2018
 #2
avatar+130474 
+2

We have the following equation

 

( 36B + 6B + A )  + ( 4*36 + 1* 6 + B)  + (36A  + 6  + 5)  = 216A + 36 + 5*6 + 2

 

Simplify

 

43B  + 37A  + 150 +  11  = 216A + 68

 

43B + 37A  + 161  = 216A + 68

 

43B   = 179A - 93

 

Note....this equation will be true when B  = 2  and A  = 1

 

So

 

l A  - B  l  =   l 1   - 2   l    =  l  -1  l   =   1

 

 

cool cool cool

 Oct 10, 2018

1 Online Users

avatar