If x, y, w, z are real numbers satisfying
w+x+y = -2
w+x+z = 4
w+y+z = 19
x+y+z = 12
What is wx + yz?
The solution is w = 1, x = -9, y = 6, z = 12, so wx + yz = (1)(-9) + (6)(12) = 63.
Sorry for this. The answer is actually $99$.Try adding all the equations together.
If x, y, w, z are real numbers satisfying
w+x+y=−2w+x+z=4w+y+z=19x+y+z=12
What is wx+yz?
(1)w+x+y=−2(2)w+x+z=4(3)w+y+z=19(4)x+y+z=12(1)+(2)+(3)+(4):3w+3x+3y+3z=−2+4+19+123(w+x+y+z)=33|:3w+x+y+z=11
w+x+y+z=11|x+y+z=12w+12=11w=11−12w=−1w+x+y+z=11|w+y+z=19x+19=11x=11−19x=−8w+x+y+z=11|w+x+z=4y+4=11y=11−4y=7w+x+y+z=11|w+x+y=−2z−2=11z=11+2z=13
wx+yz=(−1)(−8)+7∗13=8+91wx+yz=99