Processing math: 100%
 
+0  
 
0
598
2
avatar

How do i solve, cosine(2x)=-cosine(x)

 Sep 23, 2015
 #1
avatar+130478 
+5

cos(2x) = -cos(x)

 

2cos^(x)  - 1=  - cos(x)

 

2cos^2(x) + cos(x) - 1   = 0     factor

 

(2cos(x) - 1) (cos(x) + 1)  =  0     and setting each factor to 0, we have

 

2cos(x) - 1 = 0                                                                      

add 1 to both sides                                                               

2cos(x)  = 1                                                                            

divide both sides by 2                                                              

cos(x) = 1/2                                                                            

And this happens at   pi/3 + 2pi(n)

and at   5pi/3 + 2pi(n)

where n is an integer

 

 cos(x) + 1 =  0 

 subtract 1 from each side

 cos(x)  = -1

 and this happens at pi + 2pi(n)

where n is some integer

 

Here's a graph of the solutions........https://www.desmos.com/calculator/kietyhmst0

 

cool cool cool           

 Sep 23, 2015
edited by CPhill  Sep 23, 2015
 #2
avatar+26397 
0

How do i solve, cos(2x)=-cos(x)

 

cos(2x)=cos(x)cos(2x)+cos(x)=0Formula derivation cos(ux+vx)=cos(ux)cos(vx)sin(ux)sin(vx)cos(uxvx)=cos(ux)cos(vx)+sin(ux)sin(vx)cos(ux+vx)+cos(uxvx)=2cos(ux)cos(vx)ux+vx=nxuvvx=mx(1)  u+v=n(2)  uv=m(1)+(2)n+m=2uu=n+m2(1)(2)nm=2vv=nm2 cos(nx)+cos(mx)=2cos(n+m2x)cos(nm2x) 

 

n=2m=1u=2+12=32v=212=12

cos(2x)+cos(x)=2cos(32x)cos(12x)=02cos(32x)cos(12x)=0|:2cos(32x)cos(12x)=0 setting each factor to 01.cos(32x)=0|±arccos()32x=±arccos(0)±2kπ|arccos(0)=π2x=23(±π2±2kπ)x=±π3±43kπ|kN2.cos(12x)=0|±arccos()12x=±arccos(0)±2kπ|arccos(0)=π2x=2(±π2±2kπ)x=±π±4kπ|kN

 

laugh

 Sep 23, 2015

1 Online Users

avatar