cos(2x) = -cos(x)
2cos^(x) - 1= - cos(x)
2cos^2(x) + cos(x) - 1 = 0 factor
(2cos(x) - 1) (cos(x) + 1) = 0 and setting each factor to 0, we have
2cos(x) - 1 = 0
add 1 to both sides
2cos(x) = 1
divide both sides by 2
cos(x) = 1/2
And this happens at pi/3 + 2pi(n)
and at 5pi/3 + 2pi(n)
where n is an integer
cos(x) + 1 = 0
subtract 1 from each side
cos(x) = -1
and this happens at pi + 2pi(n)
where n is some integer
Here's a graph of the solutions........https://www.desmos.com/calculator/kietyhmst0
How do i solve, cos(2x)=-cos(x)
cos(2x)=−cos(x)cos(2x)+cos(x)=0Formula derivation cos(ux+vx)=cos(ux)cos(vx)−sin(ux)sin(vx)cos(ux−vx)=cos(ux)cos(vx)+sin(ux)sin(vx)cos(ux+vx)+cos(ux−vx)=2cos(ux)cos(vx)ux+vx=nxuv−vx=mx(1) u+v=n(2) u−v=m(1)+(2)n+m=2uu=n+m2(1)−(2)n−m=2vv=n−m2 cos(nx)+cos(mx)=2cos(n+m2x)cos(n−m2x)
n=2m=1u=2+12=32v=2−12=12
cos(2x)+cos(x)=2cos(32x)cos(12x)=02cos(32x)cos(12x)=0|:2cos(32x)cos(12x)=0 setting each factor to 01.cos(32x)=0|±arccos()32x=±arccos(0)±2kπ|arccos(0)=π2x=23(±π2±2kπ)x=±π3±43kπ|k∈N2.cos(12x)=0|±arccos()12x=±arccos(0)±2kπ|arccos(0)=π2x=2⋅(±π2±2kπ)x=±π±4⋅kπ|k∈N