Four positive integers A, B, C and D have a sum of 36.
If A+2=B−2=C+2=D−2,
what is the value of the product ABCD?
A+2=C+2A=CB−2=D−2B=D
A+B+C+D=36A+B+A+B=362A+2B=36|:2A+B=18(1)A+2=B−2A−B=−4(2)
(1)+(2):2A=18−42A=14|:2A=7(1)−(2):2B=18+42B=22|:2B=11
ABCD=A2B2ABCD=7212ABCD=5929
