The interior angles of a convex polygon are in an arithmetic progression. If the smallest angle is 100 degrees and common difference is 10 degrees , then find the number of sides.
The interior angles of a convex polygon are in an arithmetic progression.
If the smallest angle is 100 degrees and common difference is 10 degrees ,
then find the number of sides.
Let the sides of the polygon n
Arithmetic progression:sum=100∘+110∘+120∘+130∘+…+(100∘+(n−1)10∘)sum=(100∘+(100∘+(n−1)10∘)2)∗nsum=(100∘+100∘+10∘n−10∘2)∗nsum=(190∘+10∘n2)∗nsum=(95∘+5∘n)∗n
Interior angles of a convex polygon: sum=(n−2)∗180∘
(95∘+5∘n)∗n=(n−2)∗180∘95n+5n2=180n−2∗180…5n2−85n+360=0|:5n2−17n+72=0n=17±√172−4∗722n=17±√289−2882n=17±12n=9orn=8
the EXTERIOR angles of the polygon sum to 360 degrees
the first exterior angle would be 180 - 100 then 180 - 110 ....... until the sum is 360
180 -100 + 180 -110 + 180 -120 + 180 -130 + 180 -140 + 180 -150 + 180 -160 + 180 - 170 = 360
8 sides ( to have 9 sides it would require a 180 degree 'angle' )