Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
482
2
avatar

The interior angles of a convex polygon are in an arithmetic progression. If the smallest angle is 100 degrees and common difference is  10 degrees , then find the number of sides.

 Jun 27, 2021
 #1
avatar+26396 
+2

The interior angles of a convex polygon are in an arithmetic progression.
If the smallest angle is 100 degrees and common difference is  10 degrees ,
then find the number of sides.

 

Let the sides of the polygon n 


Arithmetic progression:sum=100+110+120+130++(100+(n1)10)sum=(100+(100+(n1)10)2)nsum=(100+100+10n102)nsum=(190+10n2)nsum=(95+5n)n

 

Interior angles of a convex polygon: sum=(n2)180

 

(95+5n)n=(n2)18095n+5n2=180n21805n285n+360=0|:5n217n+72=0n=17±1724722n=17±2892882n=17±12n=9orn=8

 

laugh

 Jun 27, 2021
 #2
avatar+37165 
+2

the EXTERIOR angles of the polygon sum to 360 degrees

   the first exterior angle would be    180 - 100     then 180 - 110    .......  until the sum is 360

 

180 -100    +    180 -110    +   180 -120   +   180 -130    +   180 -140   +  180 -150    +   180 -160   +   180 - 170 = 360

 

8 sides      (  to have 9 sides it would require a 180 degree 'angle' ) 

 Jun 27, 2021

2 Online Users

avatar