Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
445
2
avatar

Let ABCD be a square with side length 1. Points E and F lie on line BC and line CD, respectively, in such a way that angle EAF=45 degrees If [CEF]=1/8, what is the value of [AEF]?

 Jun 11, 2021
 #1
avatar
0

https://web2.0calc.com/questions/geometry_41255

 Jun 11, 2021
 #2
avatar+26396 
+1

Let ABCD be a square with side length 1.
Points E and F lie on line BC and line CD,
respectively, in such a way that angle EAF=45 degrees.

If [CEF]=1/8, what is the value of [AEF]?

 

Let CE=x Let CF=y Let BE=1x Let DF=1y Let EF=l=x2+y2 Let AE=m=1+(1x)2 Let AF=n=1+(1y)2 

 

[CEF]=xy2|[CEF]=1818=xy2|214=xyxy=14 or y=14x

 

cos - rule
In  [AEF]l2=m2+n22mncos(45)|cos(45)=22l2=m2+n22mn22l2=m2+n22mn2mn=m2+n2l2m2=1+(1x)2n=1(1y)2l2=x2+y22mn=1+(1x)2+1+(1y)2x2y22mn=1+12x+x2+1+12y+y2x2y22mn=42x2y2mn=42(x+y)2mn=2(2(x+y))|square both sides2m2n2=4(2(x+y))2|:2m2n2=2(2(x+y))2m2n2=2(44(x+y)+(x+y)2)m2n2=88(x+y)+2(x+y)2m2=1+(1x)2n=1(1y)2l2=x2+y2(1+(1x)2)(1(1y)2)=88(x+y)+2(x+y)2(22x+x2)(22y+y2)=88(x+y)+2(x2+2xy+y2)44y+2y24x+4xy2xy2+2x22x2y+x2y2=88(x+y)+2x2+4xy+2y2)44y4x2xy22x2y+x2y2=88(x+y))44(x+y)2xyy2xyx+(xy)2=88(x+y))44(x+y)2xy(x+y)+(xy)2=88(x+y))|xy=1444(x+y)214(x+y)+116=88(x+y))44(x+y)12(x+y)+116=88(x+y))8(x+y)4(x+y)12(x+y)=84116)72(x+y)=6316|27(x+y)=638x+y=6356x+y=98|y=14xx+14x=98|xx2+14=9x8x29x8+14=0x=98±81644142x=98±816412x=98±8164642x=98±17642x=98±1782x=9+1782x=9+1716|(x=0.8201941016)y=14xy=91716|(y=0.3048058984)

 

[AEF]=[ABCD][CEF][ABE][ADF][AEF]=12181(1x)21(1y)2[AEF]=121812+x212+y2[AEF]=18+x2+y2[AEF]=x+y218|x+y=98[AEF]=98218[AEF]=91618[AEF]=916216[AEF]=9216[AEF]=716

 

laugh

 Jun 11, 2021
edited by heureka  Jun 11, 2021

5 Online Users