Let ABCD be a square with side length 1. Points E and F lie on line BC and line CD, respectively, in such a way that angle EAF=45 degrees If [CEF]=1/8, what is the value of [AEF]?
Let ABCD be a square with side length 1.
Points E and F lie on line BC and line CD,
respectively, in such a way that angle EAF=45 degrees.
If [CEF]=1/8, what is the value of [AEF]?
Let CE=x Let CF=y Let BE=1−x Let DF=1−y Let EF=l=√x2+y2 Let AE=m=√1+(1−x)2 Let AF=n=√1+(1−y)2
[CEF]=xy2|[CEF]=1818=xy2|∗214=xyxy=14 or y=14x
cos - rule
In △ [AEF]l2=m2+n2−2mncos(45∘)|cos(45∘)=√22l2=m2+n2−2mn√22l2=m2+n2−√2mn√2mn=m2+n2−l2m2=1+(1−x)2n=1−(1−y)2l2=x2+y2√2mn=1+(1−x)2+1+(1−y)2−x2−y2√2mn=1+1−2x+x2+1+1−2y+y2−x2−y2√2mn=4−2x−2y√2mn=4−2(x+y)√2mn=2(2−(x+y))|square both sides2m2n2=4(2−(x+y))2|:2m2n2=2(2−(x+y))2m2n2=2(4−4(x+y)+(x+y)2)m2n2=8−8(x+y)+2(x+y)2m2=1+(1−x)2n=1−(1−y)2l2=x2+y2(1+(1−x)2)(1−(1−y)2)=8−8(x+y)+2(x+y)2(2−2x+x2)(2−2y+y2)=8−8(x+y)+2(x2+2xy+y2)4−4y+2y2−4x+4xy−2xy2+2x2−2x2y+x2y2=8−8(x+y)+2x2+4xy+2y2)4−4y−4x−2xy2−2x2y+x2y2=8−8(x+y))4−4(x+y)−2xy∗y−2xy∗x+(xy)2=8−8(x+y))4−4(x+y)−2xy(x+y)+(xy)2=8−8(x+y))|xy=144−4(x+y)−214(x+y)+116=8−8(x+y))4−4(x+y)−12(x+y)+116=8−8(x+y))8(x+y)−4(x+y)−12(x+y)=8−4−116)72(x+y)=6316|∗27(x+y)=638x+y=6356x+y=98|y=14xx+14x=98|∗xx2+14=9x8x2−9x8+14=0x=98±√8164−4∗142x=98±√8164−12x=98±√81−64642x=98±√17642x=98±√1782x=9+√1782x=9+√1716|(x=0.8201941016)y=14x⇒y=9−√1716|(y=0.3048058984)
[AEF]=[ABCD]−[CEF]−[ABE]−[ADF][AEF]=12−18−1∗(1−x)2−1∗(1−y)2[AEF]=12−18−12+x2−12+y2[AEF]=−18+x2+y2[AEF]=x+y2−18|x+y=98[AEF]=982−18[AEF]=916−18[AEF]=916−216[AEF]=9−216[AEF]=716