Factor as indicated
1.(2X+1)3/2X1/2+(2X+1)5/2X-1/2 = (2X+1)3/2X-1/2(........)
Simplify each expression
1. (x1/2-x1/3) / x1/6
2. (1-(sinx+cosx)2) / 2sinx
Solve for the indicated variable
1. x4-4x2+2=0 ; 0
2. cos2x+3cosx+2=0 ; x
Factor completely
1. 5cos2x-5sin2x+cosx+sinx
above are questions I didn't get, can anyone help me?
Factor as indicated
1. (2x+1)32x12+(2x+1)52x−12=(2x+1)32x−12(........)
(2x+1)32x12+(2x+1)52x−12=(2x+1)32x2−12+(2x+1)2+32x−12=(2x+1)32x22x−12+(2x+1)22(2x+1)32x−12=(2x+1)32x⋅x−12+(2x+1)⋅(2x+1)32x−12=(2x+1)32x−12[x+(2x+1)](2x+1)32x12+(2x+1)52x−12=(2x+1)32x−12(3x+1)
Simplify each expression
1. (x1/2-x1/3) / x1/6
x12−x13x16=x12x16−x13x16=x12x−16−x13x−16=x36x−16−x13x−16=x26−x13x−16=x13−x13x−16x12−x13x16=x13(1−x−16)
2. (1-(sinx+cosx)2) / 2sinx
1−[sin(x)+cos(x)]22sin(x)=1−[sin2(x)+2⋅sin(x)cos(x)+cos2(x)]2sin(x)|sin2(x)+cos2(x)=1=1−[1+2⋅sin(x)cos(x)]2sin(x)=1−1−2⋅sin(x)cos(x)2sin(x)=−2⋅sin(x)cos(x)2sin(x)1−[sin(x)+cos(x)]22sin(x)=−cos(x)
Factor completely
1. 5cos2x-5sin2x+cosx+sinx
5cos2(x)−5sin2(x)+cos(x)+sin(x)=5[cos2(x)−sin2(x)]+[cos(x)+sin(x)]=5[cos(x)−sin(x)][cos(x)+sin(x)]+[cos(x)+sin(x)]5cos2(x)−5sin2(x)+cos(x)+sin(x)=[cos(x)+sin(x)][5(cos(x)−sin(x))+1]