Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1026
5
avatar

Factor as indicated

1.(2X+1)3/2X1/2+(2X+1)5/2X-1/2   =   (2X+1)3/2X-1/2(........)

Simplify each expression

1. (x1/2-x1/3) / x1/6

2. (1-(sinx+cosx)2) / 2sinx

Solve for the indicated variable

1. x4-4x2+2=0 ; 0

2. cos2x+3cosx+2=0 ; x

Factor completely

1. 5cos2x-5sin2x+cosx+sinx

 

above are questions I didn't get, can anyone help me? 

 Sep 8, 2015

Best Answer 

 #5
avatar+26396 
+5

Solve for the indicated variable

2. cos2x+3cosx+2=0 ; x

 

cos2(x)+3cos(x)+2=0|cos(x)=zx=±arccos(z)z2+3z+2=0z1,2=3±9422z1,2=3±12z1=1z2=2 no solutionx1,2=±arccos(z1)x1,2=±arccos(1)x1=πx2=πx=π±2kπkN

 

laugh

 Sep 8, 2015
 #1
avatar+26396 
+5

Factor as indicated

1.  (2x+1)32x12+(2x+1)52x12=(2x+1)32x12(........)

 

(2x+1)32x12+(2x+1)52x12=(2x+1)32x212+(2x+1)2+32x12=(2x+1)32x22x12+(2x+1)22(2x+1)32x12=(2x+1)32xx12+(2x+1)(2x+1)32x12=(2x+1)32x12[x+(2x+1)](2x+1)32x12+(2x+1)52x12=(2x+1)32x12(3x+1)

 

laugh

 Sep 8, 2015
 #2
avatar+26396 
+5

Simplify each expression

1. (x1/2-x1/3) / x1/6

 

 

x12x13x16=x12x16x13x16=x12x16x13x16=x36x16x13x16=x26x13x16=x13x13x16x12x13x16=x13(1x16)

 

 

2. (1-(sinx+cosx)2) / 2sinx

 

 

1[sin(x)+cos(x)]22sin(x)=1[sin2(x)+2sin(x)cos(x)+cos2(x)]2sin(x)|sin2(x)+cos2(x)=1=1[1+2sin(x)cos(x)]2sin(x)=112sin(x)cos(x)2sin(x)=2sin(x)cos(x)2sin(x)1[sin(x)+cos(x)]22sin(x)=cos(x)

 Sep 8, 2015
 #3
avatar+26396 
0

Factor completely

1. 5cos2x-5sin2x+cosx+sinx

 

5cos2(x)5sin2(x)+cos(x)+sin(x)=5[cos2(x)sin2(x)]+[cos(x)+sin(x)]=5[cos(x)sin(x)][cos(x)+sin(x)]+[cos(x)+sin(x)]5cos2(x)5sin2(x)+cos(x)+sin(x)=[cos(x)+sin(x)][5(cos(x)sin(x))+1]

 

laugh

 Sep 8, 2015
 #4
avatar+26396 
+5

Solve for the indicated variable

1. x4-4x2+2=0 ; 0

 

x44x2+2=0|x2=zx=±zz24z+2=0z1,2=4±16422z1,2=4±82|8=42=22z1,2=4±222z1,2=2±2z1=2+2z2=22x1,2=±z1x1,2=±2+2x1=2+2x2=2+2x3,4=±z2x3,4=±22x3=22x4=22

 Sep 8, 2015
edited by heureka  Sep 8, 2015
 #5
avatar+26396 
+5
Best Answer

Solve for the indicated variable

2. cos2x+3cosx+2=0 ; x

 

cos2(x)+3cos(x)+2=0|cos(x)=zx=±arccos(z)z2+3z+2=0z1,2=3±9422z1,2=3±12z1=1z2=2 no solutionx1,2=±arccos(z1)x1,2=±arccos(1)x1=πx2=πx=π±2kπkN

 

laugh

heureka Sep 8, 2015

4 Online Users

avatar