Processing math: 100%
 
+0  
 
0
43
2
avatar+6 

Points A,B  and C are given in the coordinate plane. There exists a point Q and a constant k such that for any point P , PA2+PB2+PC2=3PQ2+k.
If  A=(4,4) ,B=(3,5)and $C=(1,2)$, then find the constant K.

This is hard but please give me an answer ASAP thanks!!

 Apr 18, 2024
 #1
avatar+1776 
0

By the distance formula,

PA2=(x4)2+(y+4)2, PB2=(x3)2+(y5)2, PC2=(x+1)2+(y2)2.

 

Hence, the given equation becomes (x4)2+(y+4)2+(x3)2+(y5)2+(x+1)2+(y2)2=3((xQ)2+(yQ)2)+k 3x2+3y214x14y+12=3x26Qx+3Q2+3y26Qy+3Q2+k 14x14y=6Qx6Qy+k12 7x+7y=3Q(x+y)+k127.

 

Since this equation holds for all points P, the coefficients of x and y must be zero.

 

Hence, Q=−7/3 and k−12=0, so k = 12​.

 Apr 18, 2024

0 Online Users