Processing math: 100%
 
+0  
 
0
870
3
avatar

h(x)= (e^x)^(1/2)

h'(x)=?

 Mar 4, 2016

Best Answer 

 #2
avatar+15088 
+5

Hallo Guest!

 

http://www.ableitungsrechner.net/#

 

h(x)= (e^x)^(1/2)

h'(x)=?

 

h'(x) = ex/2 / 2

 

Greeting asinus :- )

laugh !

 Mar 4, 2016
 #1
avatar
+5

Find the derivative of the following via implicit differentiation:
d/dx(h(x)) = d/dx(sqrt(e^x))
The derivative of h(x) is h'(x):
h'(x) = d/dx(sqrt(e^x))
Using the chain rule, d/dx(sqrt(e^x)) = ( dsqrt(u))/( du) ( du)/( dx), where u = e^x and ( d)/( du)(sqrt(u)) = 1/(2 sqrt(u)):
h'(x) = (d/dx(e^x))/(2 sqrt(e^x))
The derivative of e^x is e^x:
h'(x) = e^x/(2 sqrt(e^x))
Simplify the expression:
h'(x) = sqrt(e^x)/2
Expand the left hand side:
Answer: |  h'(x) = sqrt(e^x)/2

 Mar 4, 2016
 #2
avatar+15088 
+5
Best Answer

Hallo Guest!

 

http://www.ableitungsrechner.net/#

 

h(x)= (e^x)^(1/2)

h'(x)=?

 

h'(x) = ex/2 / 2

 

Greeting asinus :- )

laugh !

asinus Mar 4, 2016
 #3
avatar+26397 
+5

h(x)= (e^x)^(1/2)

h'(x)=?

 

h(x)=(ex)12h(x)=12(ex)(121)exh(x)=12(ex)(121)(ex)1h(x)=12(ex)(121+1)h(x)=12(ex)12h(x)=12e(x2)h(x)=e(x2)2

 

laugh

 Mar 4, 2016
edited by heureka  Mar 4, 2016

0 Online Users